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1 Basic Concepts

Figure 1.1: The necessary statistical ingredients.

Statistics is a fundamental field that plays a crucial role in various disciplines, from
science and economics to social sciences and beyond. It’s the science of collecting,
organizing, analyzing, interpreting, and presenting data. In this introductory overview,
we’ll explore some key concepts and ideas that form the foundation of statistics:

1. Data: At the heart of statistics is data. Data can be anything from numbers
and measurements to observations and information collected from experiments,
surveys, or observations. In statistical analysis, we work with two main types of
data: quantitative (numerical) and qualitative (categorical).

2. Descriptive Statistics: Descriptive statistics involve methods for summarizing
and organizing data. These methods help us understand the basic characteristics
of data, such as measures of central tendency (mean, median, mode) and measures
of variability (range, variance, standard deviation).

3. Inferential Statistics: Inferential statistics is about making predictions, infer-
ences, or decisions about a population based on a sample of data. This involves
hypothesis testing, confidence intervals, and regression analysis, among other tech-
niques.

4. Probability: Probability theory is the foundation of statistics. It deals with
uncertainty and randomness. We use probability to describe the likelihood of
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1 Basic Concepts

events occurring in various situations, which is essential for making statistical
inferences.

5. Sampling: In most cases, it’s impractical to collect data from an entire population.
Instead, we often work with samples, which are smaller subsets of the population.
The process of selecting and analyzing samples is a critical aspect of statistical
analysis.

6. Variables: Variables are characteristics or attributes that can vary from one
individual or item to another. They can be categorized as dependent (response) or
independent (predictor) variables, depending on their role in a statistical analysis.

7. Distributions: A probability distribution describes the possible values of a vari-
able and their associated probabilities. Common distributions include the normal
distribution, binomial distribution, and Poisson distribution, among others.

8. Statistical Software: In the modern era, statistical analysis is often conducted
using specialized software packages like R, Python (with libraries like NumPy and
Pandas), SPSS, or Excel. These tools facilitate data manipulation, visualization,
and complex statistical calculations.

9. Ethics and Bias: It’s essential to consider ethical principles in statistical analysis,
including issues related to data privacy, confidentiality, and the potential for bias
in data collection and interpretation.

10. Real-World Applications: Statistics has a wide range of applications, from
medical research to marketing, finance, and social sciences. It helps us make
informed decisions and draw meaningful insights from data in various fields.

1.1 Probability

1.1.1 Overview

Probability theory is a fundamental concept in the field of statistics, serving as the
foundation upon which many statistical methods and models are built.

1.1.2 What is Probability?

Probability is a mathematical concept that quantifies the uncertainty or randomness of
events. It provides a way to measure the likelihood of different outcomes occurring in
a given situation. In essence, probability is a numerical representation of our uncer-
tainty.
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1.1 Probability

1.1.3 Basic Probability Terminology

• Experiment: An experiment is any process or procedure that results in an out-
come. For example, rolling a fair six-sided die is an experiment.

• Outcome: An outcome is a possible result of an experiment. When rolling a die,
the outcomes are the numbers 1 through 6.

• Sample Space (S): The sample space is the set of all possible outcomes of an
experiment. For a fair six-sided die, the sample space is {1, 2, 3, 4, 5, 6}.

• Event (E): An event is a specific subset of the sample space. It represents a
particular set of outcomes that we are interested in. For instance, “rolling an even
number” is an event for a six-sided die, which includes outcomes {2, 4, 6}.

1.1.4 Probability Notation

In probability theory, we use notation to represent various concepts:

• P(E): Probability of event E occurring.
• P(A and B): Probability of both events A and B occurring.
• P(A or B): Probability of either event A or event B occurring.
• P(E’): Probability of the complement of event E, which is the probability of E not

occurring.

1.1.5 The Fundamental Principles of Probability

There are two fundamental principles of probability:

• The Addition Rule: It states that the probability of either event A or event B
occurring is given by the sum of their individual probabilities, provided that the
events are mutually exclusive (i.e., they cannot both occur simultaneously).

𝑃(𝐴 𝑜𝑟 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) (1.1)

• The Multiplication Rule: It states that the probability of both event A and
event B occurring is the product of their individual probabilities, provided that
the events are independent (i.e., the occurrence of one event does not affect the
occurrence of the other).

𝑃(𝐴 𝑎𝑛𝑑 𝐵) = 𝑃(𝐴) ∗ 𝑃(𝐵) (1.2)

9



1 Basic Concepts

1.1.6 Example: Rolling a Fair Six-Sided Die

Consider rolling a fair six-sided die.

• Sample Space (S): {1, 2, 3, 4, 5, 6} (Figure 1.2)
• Event A: Rolling an even number = {2, 4, 6} (Figure 1.2)
• Event B: Rolling a number greater than 3 = {4, 5, 6} (Figure 1.2)

Figure 1.2: This example’s sample space, as well as event A and event B.

1.1.7 Probability in action - The Galton Board

A Galton board, also known as a bean machine or a quincunx, is a mechanical device that
demonstrates the principles of probability and the normal distribution. It was invented
by Sir Francis Galton1 in the late 19th century. The Galton board consists of a vertical
board with a series of pegs or nails arranged in triangular or hexagonal patterns.

A Galton board, also known as a bean machine or a quincunx, is a mechanical device that
demonstrates the principles of probability and the normal distribution. It was invented
by Sir Francis Galton in the late 19th century. The Galton board consists of a vertical
board with a series of pegs or nails arranged in triangular or hexagonal patterns.

1. Initial Release: At the top of the Galton board, a ball or particle is released.
This ball can take one of two paths at each peg, either to the left or to the right.

1Sir Francis Galton (1822-1911): Influential English scientist, notable for his contributions to statistics
and genetics.
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1.1 Probability

The decision at each peg is determined by chance, such as the flip of a coin or the
roll of a die. This represents a random event.

2. Multiple Trials: As the ball progresses downward, it encounters several pegs,
each of which randomly directs it either left or right. The ball continues to bounce
off pegs until it reaches the bottom.

3. Accumulation: Over multiple trials or runs of the Galton board, you will notice
that the balls accumulate in a pattern at the bottom. This pattern forms a bell-
shaped curve, which is the hallmark of a normal distribution.

4. Normal Distribution: The accumulation of balls at the bottom resembles the
shape of a normal distribution curve. This means that the majority of balls will
tend to accumulate in the center, forming the peak of the curve, while fewer balls
will accumulate at the extreme left and right sides.

The Galton board is a visual representation of the central limit theorem, a fundamental
concept in probability theory. It demonstrates how random events, when repeated many
times, tend to follow a normal distribution. This distribution is commonly observed in
various natural phenomena and is essential in statistical analysis.

Figure 1.3: A Galton board in action.

1.1.7.1 Statistics and Probabbility

The Galton board is a nice example how statistics emerge from probability.

11



1 Basic Concepts

1.1.7.1.1 Define the problem

• The board has 𝑛 rows of pegs (columns)
• Each ball has an equal probability of moving left or right (assuming no bias)
• The number of rightward moves determines the final position in the bins

1.1.7.1.2 Step 2: Binomial Probability Distribution

Each ball independently moves right (𝑅) or left (𝐿) with a probability of 𝑝 = 0.5.
The number of rightwards moves follows a binomial distribution.

𝑃(𝑘) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘 (1.3)

𝑛 total number of columns (or pegs encountered)
𝑘 number of rightward moves
(𝑛

𝑘) biomial coefficient, given by (𝑛
𝑘) = 𝑛!

𝑘!(𝑛−𝑘)!

with 𝑝 = 0.5 this simplifies to

𝑃(𝑘) = (𝑛
𝑘)(1

2)𝑛 (1.4)

1.1.7.1.3 Step 3: Position Mapping

The final position of a ball in a bin corresponds to the number of rightwards moves 𝑘.
If the bins are indexed from 0 to 𝑛 (where 𝑘 = 0 means all left moves and 𝑘 = 𝑛 means
all right moves) the probability of landing in bin 𝑘 is:

𝑃(𝑘) = 𝑛!
𝑘!(𝑛 − 𝑘)!(

1
2)𝑛 (1.5)

1.2 Population

In statistics, a population is the complete set of individuals, items, or data points that
are the subject of a study. Understanding populations and how to work with them is
fundamental in statistical analysis, as it forms the basis for making meaningful inferences
and drawing conclusions about the broader group being studied. It is the complete
collection of all elements that share a common characteristic or feature and is of interest
to the researcher. The population can vary widely depending on the research question

12
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Figure 1.4: An example for a population.

or problem at hand. A populations true mean is depicted with 𝜇0 and the variance is
depicted with 𝜎2

0.

1.3 Sample

The key principles behind a sample include its role as a manageable subset of data, which
can be chosen randomly or purposefully. Ideally, it should be representative, reflecting
the characteristics and diversity of the larger population. Statistical techniques are
then applied to this sample to make inferences, estimate population parameters, or test
hypotheses. The size of the sample matters, as a larger sample often leads to more
precise estimates, but it should be determined based on research goals and available
resources. Various sampling methods, such as random sampling, stratified sampling, or
cluster sampling, can be employed depending on the research objectives and population
characteristics. A samples true mean is depicted with ̄𝑥 and the variance is depicted
with 𝑠𝑑.

1.4 Descriptive Statistics

Descriptive statistics are used to summarize and describe the main features of a data set.
They provide a way to organize, present, and analyze data in a meaningful and concise
manner. Descriptive statistics do not involve making inferences or drawing conclusions
beyond the data that is being analyzed. Instead, they aim to provide a clear and

13



1 Basic Concepts

Figure 1.5: A sample drawn from the population.

accurate representation of the data set. Some common techniques and measures used in
descriptive statistics include:

1.4.1 Example Data: The drive shaft exercise

Figure 1.6: The drive shaft specification.

1.4.2 Measures of Central Tendency

Measures of central tendency are essential in statistics because they provide a single
value that summarizes or represents the center point or typical value of a dataset. The
main reasons for using these measures include:

14



1.4 Descriptive Statistics

Figure 1.7: Difference between the population of ALL drive shafts and a sample of drive
shafts.

• Simplification of Data: They condense large sets of data into a single representative
value, making the data easier to understand and interpret.

• Comparison Across Datasets: They allow for straightforward comparison between
different groups or datasets by providing a common reference point.

• Foundation for Further Analysis: Many statistical techniques and models rely on
an understanding of central tendency as a starting point, such as in regression
analysis or hypothesis testing.

• Decision-Making: In fields such as economics, education, and public policy, cen-
tral tendency helps inform decisions based on typical outcomes or behaviors (e.g.,
average income, median test scores).

• Identification of Patterns: They help identify patterns and trends over time, espe-
cially in time-series data or longitudinal studies.

1.4.2.1 Mean

population: 𝜇 = 1
𝑁

𝑁
∑

𝑖
𝑥𝑖 (1.6)

sample: ̄𝑥 = 1
𝑛

𝑛
∑

𝑖
𝑥𝑖 (1.7)
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1 Basic Concepts

Figure 1.8: Some drive shaft sample data in a 2D plot of sample index vs. variable value

Figure 1.9: Some drive shaft sample data in a 2D plot of sample index vs. variable value

1.4.2.2 Median

population: 𝑚 = {𝑥( 𝑁+1
2 ) if 𝑁 is odd

1
2 (𝑥( 𝑁

2 ) + 𝑥( 𝑁
2 +1)) if 𝑁 is even

(1.8)

sample: ̃𝑥 = {𝑥( 𝑛+1
2 ) if 𝑛 is odd

1
2 (𝑥( 𝑛

2 ) + 𝑥( 𝑛
2 +1)) if 𝑛 is even

(1.9)

1.4.3 Measures of Spread

Measures of spread (also called measures of dispersion or variability) are essential in
statistics to provide information about the distribution of data — specifically, how much
the data values differ from each other and from the central tendency.

16



1.4 Descriptive Statistics

Figure 1.10: A graphical depiction of the mean

• Contextualizing Central Tendency: The mean or median alone does not give a
complete picture of the data. Two datasets can have the same mean but very
different spreads.

• Understanding Data Consistency: Measures of spread indicate how consistent or
reliable the data are. A small spread suggests the values are closely clustered
around the mean, while a large spread indicates greater variability and less pre-
dictability.

• Identifying Outliers: Large measures of spread may indicate the presence of outliers
— values that are significantly different from others in the dataset. This can be
important in quality control, risk assessment, and anomaly detection.

• Comparing Distributions: Spread allows for meaningful comparison between dif-
ferent datasets.

• Informing Statistical Models: Many statistical methods, such as regression, hy-
pothesis testing, and confidence intervals, rely on measures of spread (like variance
or standard deviation) to estimate error, assess significance, or make predictions.

1.4.3.1 Range

Range = 𝑥max − 𝑥min (1.10)

There is no difference in computing the range for the population or the sample

17



1 Basic Concepts

Figure 1.11: A graphical depiction of the median

1.4.3.2 Variance

population: 𝜎2 = 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 − 𝜇)2 (1.11)

sample: 𝑠𝑑2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2 (1.12)

1.4.3.2.1 The Bessel’s correction

The variance calculated from a sample has one degree of freedom less, then the population
variance.

Imagine you have 5 candies, and you want to give them to 5 friends — one candy to
each. You decide how to give the first candy, then the second, third, and fourth. But
when you get to the last candy, you have no choice — you have to give it to the last
friend, so everyone gets one.

That’s kind of like degrees of freedom in statistics. It means how many things you’re
free to choose before something has to be a certain way.

So if you’re working with 5 numbers, and they all have to add up to a certain total (like
a mean), you can choose 4 of them freely, but the last one has to be whatever makes the
total come out right. That’s why we say there are 4 degrees of freedom — 4 numbers
you can choose any way you want.
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1.4 Descriptive Statistics

Figure 1.12: Spread, Dispersion, Variance … many names for measuring variability of
data

{2, 4, 6}

• Mean: ̄𝑥 = 2+4+6
3 = 4

• Deviations: −2, 0, 2
• Squared Deviations: 4, 0, 4
• Sum of squared deviations: 8

with Bessel’s correction: 𝑠𝑑2 = 8
3−1 = 4

without Bessel’s correction: 𝑠𝑑2 = 8
3 ≈ 2.67 (biased, underestimates variance)

When computing the variance from a sample, we need to calculate ̄𝑥, which uses up one
degree of freedom and biases our estimate

1.4.3.2.2 Bessel’s correction with increasing sample size

1.4.3.3 Standard Deviation

1.4.3.4 Percentiles, quantiles

1.4.4 Histogram

An example for descriptive statistics is shown in Figure 1.17 as a histogram. It shows data
from a company that produces pharmaceutical syringes, taken from Ramalho (2021).
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Figure 1.13: A graphical depiction of the range

Figure 1.14: A graphical depiction of the variance

During the production of those syringes, the so called barrel diameter is a critical pa-
rameter to the function of the syringe and therefore of special interest for the Quality
Control.

A histogram as shown in Figure 1.17 shows the data of 150 measurements during the QC.
On the x-axis the barrel diameter is shown, while the count of each binned diameter is
shown on the y-axis. The binning and of data is a crucial parameter for such a plot,
because it already changes the appearance and width of the bars. Binning is a trade-off
between visibility and readability.

1.4.5 Density plot

Density plots are another way of displaying the statistical distribution of an underlying
dataset. The biggest strength of those plots is, that no binning is necessary in order to
show the data. The limitation of this kind of plot is the interpretability. An example of
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Figure 1.15: The biased (n) variance is not as prcises as the unbiased (n-1) variance
estimate. This effect decreases with increasing sample size.

a density plot for the syringe data is shown in Figure 1.18. On the x-axis the syringe
barrel diameter is shown (as in a histogram). The y-axis in contrast does not display
the count of a binned category, but rather the Probability Density Function for the
specific diameter. The grey area under the density curve depicts the probability of a
syringe diameter to appear in the data. The complete area under the curve equals to 1
meaning that a certain diameter is sure to appear in the data.
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Figure 1.16: The difference between the biased (n) and unbiased (n-1) shows, that the
Bessel’s correction increases variation while decreasing bias

1.4.6 Boxplot
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with an overlayed boxplot.

Figure 1.19: A boxplot of the same syringe data combined with the according histogram.

22



1.4 Descriptive Statistics

1
0 0 0 0 0 0 0

1
0

2

6

2

0
1 1

5

3
4

9

6

11

9
10

8 8

6 6

9

5
6

5 5

2
3

4
5

3
2 2

0

1

2

3

4

5

6

7

8

9

10

11

5.
28

2
5.

28
4

5.
28

6
5.

28
8

5.
29

0
5.

29
2

5.
29

4
5.

29
6

5.
29

8
5.

30
0

5.
30

2
5.

30
4

5.
30

6
5.

30
8

5.
31

0
5.

31
2

5.
31

4
5.

31
6

5.
31

7
5.

31
9

5.
32

1
5.

32
3

5.
32

5
5.

32
7

5.
32

9
5.

33
1

5.
33

3
5.

33
5

5.
33

7
5.

33
9

5.
34

1
5.

34
3

5.
34

5
5.

34
7

5.
34

9
5.

35
1

5.
35

3
5.

35
5

5.
35

7
5.

35
9

5.
36

1

diameter in mm

co
un

t

A histogram of the syringe data.

Figure 1.17: An example for descriptive statistics (histogramm)

It is very common to include and inspect measures of central tendency in the graphical
depiction of data. A boxplot, also known as a box-and-whisker plot, is a very common
way of doing this. A boxplot is a graphical representation of a dataset’s distribution.
It displays the following key statistics:

1. Median (middle value).
2. Quartiles (25𝑡ℎ and 75𝑡ℎ percentiles), forming a box.
3. Minimum and maximum values (whiskers).
4. Outliers (data points significantly different from the rest).

The syringe data in boxplot form is shown in Figure 1.19 as an overlay of the histogram
plot before. Boxplots are useful for quickly understanding the central tendency, spread,
and presence of outliers in a dataset, making them a valuable tool in data analysis and
visualization.

1.4.7 Average, Standard deviation and Range

Very popular measures of central tendency include the average (mean) and the standard
deviation (variance) of a dataset. The computed mean from an actual dataset is depicted
with ̄𝑥 and calculated via (1.13).

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 (1.13)
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Figure 1.18: An example for a density plot for the syringe data (barrel diameter).

With 𝑛 being the number of datapoints and 𝑥𝑖 being the datapoints. The mean is
therefore the sum of all datapoints divided by the total number 𝑛 of all datapoints. It
is not to be confused with the true mean 𝜇0 of a population.

The computed standard deviation from an actual dataset is depicted with 𝑠𝑑 and calcu-
lated via (1.14).

𝑠𝑑 = √ 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2 (1.14)

The standard deviation can therefore be explained as the square root of the sum of all
differences of each individual datapoints to the mean of a dataset divided by the number
of datapoints. It is not to be confused with the true variance 𝜎2

0 of a population. The
variance of a dataset can be calculatd via (1.15).

𝜎 = 𝑠𝑑2 (1.15)

The range from an actual dataset is depicted with 𝑟 and calculated via (1.16).

𝑟 = max(𝑥𝑖) − min(𝑥𝑖) (1.16)

The range can therefore be interpreted as the range from minimum to maximum in a
dataset.
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Figure 1.20: A histogram of the syringe data with mean, standard deviation and range.

1.5 Visualizing Groups

1.5.1 Boxplots

The methods described above are especially useful when it comes to visualizing groups
in data. The data is discretized and the information density is increased. As with every
discretization comes also a loss of information. It is therefore strongly advised to choose
the right tool for the job.

If the underlying distribution of the data is unknown, a good start to visualize groups
within data is usually a boxplot as shown in Figure 1.21. The syringe data from Ramalho
(2021) contains six different groups, one for every sample drawn. Each sample consists
of 25 observations in total. On the x-axis the diameter in mm is shown, the y-axis
depicts the sample number. The boxplots are then drawn as described above (median,
25𝑡ℎ and 75𝑡ℎ percentile box, 5𝑡ℎ and 95𝑡ℎ whisker). The 25𝑡ℎ and 75𝑡ℎ percentile box
is also known as the Interquartile Range

1.5.2 Mean and standard deviation plots

If the data follows a normal distribution, showing the mean and standard deviation for
each group is also very common. For the syringe dataset, this is shown in Figure 1.22.
The plot follows the same logic as for the boxplots (x-axis-data, y-axis-data), but
the data itself shows the mean with a ×-symbol, as the length of the horizontal errorbars
accords to ̄𝑥 ± 𝑠𝑑(𝑥).
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Figure 1.21: Boxplots of the syringe data with the samples as groups.

1.5.3 Half-half plots

Boxplots and mean-and-standard-deviation plots sometimes hide some details within the
data, that may be of interest or simply important. Half-half plots, as shown in shown
in Figure 1.23, incorporate different plot mechanisms. The left half shows a violin plot,
which outlines the underlying distribution of the data using the PDF. This is very similar
to a density plot. The right half shows the original data points and give the user a visible
clue about the sample size in the data size. Note that the y-position of the points is
jittered to counter overplotting. Details can be found in Tiedemann (2022).

1.5.4 Ridgeline plots

Figure 1.24 shows so called ridgeline plots as explained in Wilke (2022). They are in
essence density plots that use the y-axis to differentiate between the groups. On the
x-axis the density of the underlying dataset is shown. More info on the creation of these
plots and graphics is available in Wickham (2016) as well as “The R Graph Gallery –
Help and Inspiration for r Charts” (2022).
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Figure 1.22: Mean and standard deviation plots of the groups in the dataset.

1.6 The drive shaft exercise

1.6.1 Introduction

A drive shaft is a mechanical component used in various vehicles and machinery to
transmit rotational power or torque from an engine or motor to the wheels or other
driven components. It serves as a linkage between the power source and the driven part,
allowing the transfer of energy to propel the vehicle or operate the machinery.

1. Material Selection: Quality steel or aluminum alloys are chosen based on the spe-
cific application and requirements.

2. Cutting and Machining: The selected material is cut and machined to achieve the
desired shape and size. Precision machining is crucial for balance and performance.

3. Welding or Assembly: Multiple sections may be welded or assembled to achieve
the required length. Proper welding techniques are used to maintain structural
integrity.

4. Balancing: Balancing is critical to minimize vibrations and ensure smooth opera-
tion. Counterweights are added or mass distribution is adjusted.

5. Surface Treatment: Drive shafts are often coated or treated for corrosion resis-
tance and durability. Common treatments include painting, plating, or applying
protective coatings.
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Figure 1.23: Half-half plots that incooperate different types of plots

6. Quality Control: Rigorous quality control measures are employed to meet specific
standards and tolerances. This includes dimensional checks, material testing, and
defect inspections.

7. Packaging and Distribution: Once quality control is passed, drive shafts are pack-
aged and prepared for distribution to manufacturers of vehicles or machinery.

The end diameter of a drive shaft is primarily determined by its torque capacity, length,
and material selection. It needs to be designed to handle the maximum torque while
maintaining structural integrity and flexibility as required by the specific application.
For efficient load transfer, there are ball bearings mounted on the end diameter. Ball
bearings at the end diameter of a drive shaft support its rotation, reducing friction.
They handle axial and radial loads, need lubrication for longevity, and may include seals
for protection. Proper alignment and maintenance are crucial for their performance and
customization is possible to match specific requirements.

The end diameter of the drive shaft shall be ∅12±0.1𝑚𝑚 (see Figure 1.25). This example
will haunt us the rest of this lecture.

1.6.2 Visualizing all the Data

First, some descriptive statistics of 𝑁 = 500 produced drive shafts are shown in Table 1.1
( ̄𝑥(𝑠𝑑), 𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑄𝑅)). This first table does not tell us an awful lot about the sample,
apart from the classic statistical measures of central tendency and spread.

Table 1.1: The summary table of the drive shaft data
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1.6 The drive shaft exercise

Variable N = 5001

diameter 12.17 (0.51), 12.03 (0.58)
1Mean (SD), Median (IQR)

In Figure 1.26 the data and the distribution thereof is visualized using different modali-
ties. The complete drive shaft data is shown as a histogram (Figure 1.26a) and as a
density plot (Figure 1.26b). A single boxplot is plotted over the histogram data in Fig-
ure 1.26a, providing a link to Table 1.1 (median and IQR). One important conclusion
may be draw from those plots already: There may be more than one dataset hidden
inside the data. We will explore this possibility further.

1.6.3 Visualizing groups within the data

Fortunately for us, the groups that may be hidden within the data are marked in the
orginal dataset and denoted as group0x. Unfortunately for us, it is not known (purely
from the data) how these groups come about. Because we did get the dataset from a
colleague, we need to investigate the creation of the dataset even further. This is an
important point, for without knowledge about the history of the data, it is impossible
or at least unadvisable to make valid statements about the data. We will go on with
a table of summary statistics, see Table 1.2. Surprisingly, there are five groups hidden
within the data, something we would no be able to spot from the raw data alone.

Table 1.2: The group summary table of the drive shaft data
Variable N = 1001

group01 12.02 (0.11), 12.02 (0.16)
group02 12.36 (0.19), 12.34 (0.25)
group03 13.00 (0.10), 13.01 (0.13)
group04 11.49 (0.09), 11.49 (0.12)
group05 12.001 (0.026), 12.000 (0.030)

1Mean (SD), Median (IQR)

Again, the table is good to have, but not as engagingi for ourself and our co-workers
to look at. In order to make the data more approachable, we will use some techniques
shown in Section 1.5.

First in Figure 1.27a the raw data points are shown as points with overlayed boxplots.
On the x-axis the groups are depicted, while the Parameter of Interest (in this case
the end diameter of the drive shaft) is shown on the y-axis. Because we are interested
how the manufactured drive shafts behave with respect to the specification limit, the
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Figure 1.24: Ridgeline plots for distributions within groups.

Figure 1.25: The drive shaft specification.

nominal value as well as the uppper and the lower specification limit is also shown in
the plot as horizontal lines.

In Figure 1.27b the data is shown as ridgeline density plots. On the x-axis the diameter
is depiected, while the y-axis shows two types of data. First, the groups 1 … 5 are shown.
For the individual groups, the probability is depicted as a line, therefore indicating which
values are most probable in the given group. Again, because we are interested how the
manufactured drive shafts behave .w.r.t the specification limit, the nominal value as
well as the uppper and the lower specification limit is also shown in the plot as vertical
lines.
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(a) The drive shaft data shown in a histogram.
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(b) The drive shaft data shown in a density plot.

Figure 1.26: The raw data of the measured drive shaft diameter.
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Figure 1.27: The raw data of the measured drive shaft diameter.
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2 Statistical Distributions

2.1 Types of data

Figure 2.1: Data can be classified as different types.

1. Nominal Data:

• Description: Nominal data represents categories with no inherent order or
ranking.

• Examples: Colors, gender, or types of fruits.
• Characteristics: Categories are distinct, but there is no meaningful numerical

value associated.

2. Ordinal Data:

• Description: Ordinal data has categories with a meaningful order or ranking,
but the intervals between them are not consistent or measurable.

• Examples: Educational levels (e.g., high school, bachelor’s, master’s), cus-
tomer satisfaction ratings (e.g., low, medium, high).

• Characteristics: The order is significant, but the differences between cate-
gories are not precisely quantifiable.

3. Discrete Data:

• Description: Discrete data consists of separate, distinct values, often counted
in whole numbers and with no intermediate values between them.

• Examples: Number of students in a class, number of cars in a parking lot.
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2 Statistical Distributions

• Characteristics: The data points are distinct and separate; they do not have
infinite possible values within a given range.

4. Continuous Data:

• Description: Continuous data can take any value within a given range and
can be measured with precision.

• Examples: Height, weight, temperature.
• Characteristics: Values can be any real number within a range, and there are

theoretically infinite possible values within that range.

2.1.1 Nominal Data

Figure 2.2: Some example for nominal data.

Nominal data is a type of data that represents categories or labels without any specific
order or ranking. These categories are distinct and non-numeric. For example, colors,
types of fruits, or gender (male, female, other) are nominal data. Nominal data can
be used for classification and grouping, but mathematical operations like addition or
subtraction do not make sense in this context.

2.1.2 Ordinal Data

Ordinal data represents categories that have a specific order or ranking. While the cate-
gories themselves may not have a consistent numeric difference between them, they can
be arranged in a meaningful sequence. A common example of ordinal data is survey re-
sponses with options like “strongly agree,” “agree,” “neutral,” “disagree,” and “strongly
disagree.” These categories indicate a level of agreement, but the differences between
them may not be uniform or measurable.
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2.1 Types of data

Figure 2.3: Some example for ordinal data.

2.1.3 Discrete Data

Figure 2.4: Some example for discrete data.

Discrete data consists of distinct, separate values that can be counted and usually come
in whole numbers. These values can be finite or infinite, but they are not continuous.
Examples include the number of students in a class, the count of cars in a parking lot,
or the quantity of books in a library. Discrete data is often used in counting and can be
represented as integers.

One quote in the literature about discrete data, shows how difficult the classification of
data types can become (J. Bibby (1980)): “… All actual sample spaces are discrete, and
all observable random variables have discrete distributions. The continuous distribution
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2 Statistical Distributions

is a mathematical construction, suitable for mathematical treatment, but not practically
observable. …”

2.1.4 Continous Data

Figure 2.5: Some example for continous data.

Continuous data encompasses a wide range of values within a given interval and can
take on any real number. There are infinite possibilities between any two points in a
continuous dataset, making it suitable for measurements with high precision. Examples
of continuous data include temperature, height, weight, and time. It is important to
note that continuous data can be measured with decimals or fractions and is not limited
to whole numbers.

2.2 Bionmimal Distribution

The binomial distribution is a discrete probability distribution that describes the num-
ber of successes in a fixed number of independent Bernoulli trials, each with the same
probability of success. A Bernoulli trial, named after Swiss mathematician Jacob Bernoulli1,
is a random experiment or trial with two possible outcomes: success and failure. These
outcomes are typically labeled as 1 for success and 0 for failure. The key characteristics
of a Bernoulli trial are:

1Jacob Bernoulli (1654-1705): Notable Swiss mathematician, known for Bernoulli’s principle and sig-
nificant contributions to calculus and probability theory.
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Figure 2.6: The binomial distribution

1. Two Outcomes: There are only two possible outcomes in each trial, and they
are mutually exclusive. For example, in a coin toss, the outcomes could be heads
(success, represented as 1) or tails (failure, represented as 0).

2. Constant Probability: The probability of success remains the same for each
trial. This means that the likelihood of success and failure is consistent from one
trial to the next.

3. Independence: Each trial is independent of others, meaning that the outcome
of one trial does not influence the outcome of subsequent trials. For instance, the
result of one coin toss doesn’t affect the result of the next coin toss.

Examples of Bernoulli trials include:

• Flipping a coin (heads as success, tails as failure).
• Rolling a die and checking if a specific number appears (the number as success,

others as failure).
• Testing whether a manufactured product is defective or non-defective (defective as

success, non-defective as failure).

The Bernoulli trial is the fundamental building block for many other probability distri-
butions, including the binomial distribution, which models the number of successes in a
fixed number of Bernoulli trials.
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2 Statistical Distributions

2.2.1 Probability Mass Function (PMF)

The probability mass function (PMF), also known as the discrete probability density
function, is a fundamental concept in probability and statistics.

• Definition: The PMF describes the probability distribution of a discrete random
variable. It gives the probability that the random variable takes on a specific
value. In other words, the PMF assigns probabilities to each possible outcome of
the random variable.

• Formal Representation: For a discrete random variable X, the PMF is denoted as
P(X = x), where x represents a specific value. Mathematically, the PMF is defined
as: 𝑃(𝑋 = 𝑥) = probability that 𝑋 takes the value 𝑥

• Properties: The probabilities associated with all hypothetical values must be non-
negative and sum up to 1. Thinking of probability as “mass” helps avoid mistakes,
as the total probability for all possible outcomes is conserved (similar to how
physical mass is conserved).

• Comparison with Probability Density Function (PDF): A PMF is specific to dis-
crete random variables, while a PDF is associated with continuous random vari-
ables. Unlike a PDF, which requires integration over an interval, the PMF directly
provides probabilities for individual values.

• Mode: The value of the random variable with the largest probability mass is called
the mode.

• Measure-Theoretic Formulation: The PMF can be seen as a special case of more
general measure-theoretic constructions. It relates to the distribution of a random
variable and the probability density function with respect to the counting measure.

The PMF for the binomial distribution is given in (2.1)

𝑃(𝑋 = 𝑘) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘 (2.1)

2.2.2 The drive shaft exercise - Binomial Distribution

In the context of a drive shaft, you can think of it as a model for the number of defective
drive shafts in a production batch. Each drive shaft is either good (success) or defective
(failure).

Let’s say you have a batch of 100 drive shafts, and the probability of any single drive
shaft being defective is 0.05(5%). You want to find the probability of having a certain
number of defective drive shafts in this batch.
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Figure 2.7: The binomial disitribution and the drive shaft exercise.

2.3 The Normal Distribution

The normal distribution is a fundamental statistical concept that holds immense signifi-
cance in the realms of engineering and production. It is often referred to as the Gaussian
distribution or the bell curve, is a mathematical model that describes the distribution
of data in various natural and human-made phenomena, see Johnson (1994). It forms a
symmetrical curve when plotted, is centered around a mean (𝜇0) and balanced on both
sides (Figure 2.8). The spread or dispersion of the data points is characterized by 𝜎2

0.
Those two parameters completley define the normal distribution. A remarkable property
of the normal distribution is the empirical rule, which states that approximately 68%
of the data falls within one standard deviation from the mean, 95% falls within two
standard deviations, and 99.7% falls within three standard deviations (Figure 2.8). The
existence of the normal distribution in the real world is a result of the combination of
several factors, including the principles of statistics and probability, the Central Limit
Theorem, and the behavior of random processes in nature and society.
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2.3 The Normal Distribution
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2.3.1.1 The math behind

𝑃(𝑘) = (𝑛
𝑘) ⋅ 1

2
𝑛

2.3.1.2 Mean and Standard Deviation from the Galton board

• What is the expected value?

𝜇 = 𝐸[𝑋] = 𝑛𝑝

𝑝 = 0.5 → 𝜇 = 𝑛 × 0.5 = 1
2𝑛

On average a ball will land in 𝑘 = 𝑛
2
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2 Statistical Distributions

• What is the spread

𝜎 = √𝑛𝑝(1 − 𝑝)
𝑉 𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] (Variance in general)

𝑉 𝑎𝑟(𝑋) = 𝑛𝑝(1 − 𝑝) (number of right moves)

2.3.1.3 Understanding spread

𝜎2 = 𝑛𝑝(1 − 𝑝)

• Every step is independent, for a single step (𝑝 = 0.5):

𝑉 𝑎𝑟(𝑋) = 𝑝(1 − 𝑝)

• Therefore for 𝑛 steps:

𝑉 𝑎𝑟(𝑋) = 𝑛𝑝(1 − 𝑝) → 𝜎 =
√𝑛
2

• For 𝑛 = 100

𝜎 =
√

100
2 so most balls will land between 45 and 55

2.4 Z - Standardization

The Z-standardization, also known as standard score or z-score, is a common statistical
technique used to transform data into a standard normal distribution with a mean of 0
and a standard deviation of 1 (Taboga 2017). This transformation is useful for comparing
and analyzing data that have different scales and units (2.2).

𝑍 = 𝑥𝑖 − ̄𝑥
𝑠𝑑 (2.2)

How the z-score can be applied is shown in Figure 2.9 and Figure 2.10. The data for
group X and group Y may be measured in different units ( Figure 2.9). To answer the
question, which of the values 𝑥𝑖(𝑖 = 1 … 5) is more probable, the single data points are
transformed to the respective z-score using (2.2). In Figure 2.10, the z-scores for both
groups are plotted against each other. The perfect correlation of the datapoints shows,
that for every 𝑥𝑖 the same probability applies. Thus, the datapoints are comparable.
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2.4.1 The drive shaft exercise - Z-Standardization
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Figure 2.11: The standardized data of the drive shaft data.

In Figure 2.11 the standardized drive shaft data is shown. The mean of the data ( ̄𝑥)
is now centered at 0 and the standard deviation is 1. For this case, the specification
limits have also been transferred to the respective z-score (even though they can not
be interpreted as such anymore). For every 𝑥𝑖 the probability to be within a normal
distribution is now known. When comparing this to the transferred specification limits,
it is clear to see that for group01 “most” of the data points are within the limits in
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Figure 2.10: The correlation of the z-score shows, that every point 𝑥𝑖 is equally probable

contrast to group03 where none of the data points lies within the specification limits.
When looking at group03 we see, that the nominal specification limit is -9.78 standard
deviations away from the centered mean of the datapoints. The probability of a data
point being located there is 6.8605273 × 10−23 which does not sound an awful lot. We
will dwelve more into such investigation in another chapter, but this is a first step in the
direction of inferential statistics.

2.4.2 Central Limit Theorem (CLT)

The primary reason for the existence of the normal distribution in many real-world
datasets is the Central Limit Theorem (Taboga 2017). The CLT states that when you
take a large enough number of random samples from any population, the distribution
of the sample means will tend to follow a normal distribution, even if the original pop-
ulation distribution is not normal. This means that the normal distribution emerges
as a statistical consequence of aggregating random data points. This is shown in Fig-
ure 2.12.

From 𝑛 = 10000 uniformly disitrbuted data points (the population) (𝑚𝑖𝑛 = 1, 𝑚𝑎𝑥 =
100) either 2, 10, 50 or 200 samples are taken randomly (the samples). For each of the
samples the mean is calculated, resulting in 1000 mean values for each (2, 10, 50 or
200) sample size. In Figure 2.12 the results from this numerical study are shown. The
larger the sample size, the closer the mean calculated ̄𝑥is to the population mean (𝜇0).
The effect is especially large on the standard deviation, resulting in a smaller standard
deviation the larger the sample size is.
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Figure 2.12: The central limit theorem in action.

2.4.3 Law of Large Numbers
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Figure 2.13: The Law of Large Numbers in Action with die rolls as an example.
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The Law of Large Numbers states that as the size of a random sample increases, the sam-
ple average converges to the population mean. This law, along with the CLT, explains
why the normal distribution frequently arises. When you take many small, independent,
and identically distributed measurements and compute their averages, these averages
tend to cluster around the true population mean, forming a normal distribution John-
son (1994).

The LLN ar work is shown in Figure 2.13. A fair six-sided die is rolled 1000 times and
the running average of the roll results after each roll is calculated. The resulting line
plot shows how the running average approaches the expected value of 3.5, which is the
average of all possible outcomes of the die. The line in the plot represents the running
average It fluctuates at the beginning but gradually converges toward the expected value
of 3.5. To emphasize this convergence, a dashed line indicating the theoretical expected
value which is essentially the expected value applied to each roll. This visualization
demonstrates the Law of Large Numbers, which states that as the number of trials or
rolls increases, the sample mean (running average in this case) approaches the population
mean (expected value) with greater accuracy, showing the predictability and stability of
random processes over a large number of observations.

2.4.4 The Z-transform and the Galton Board

0.000

0.005

0.010

0.015

0.020

0.025

0 250 500 750 1000
bin_nr

P
ro

b

2.4.4.1 Applying the Z-transform

𝑍 = 𝑋 − 𝜇
𝜎
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2.4 Z - Standardization

𝑍 = 𝑋 − 𝑛
2√𝑛

2

lim
𝑛→∞

𝑃(𝑎 ≤ 𝑍 ≤ 𝑏) = ∫
𝑏

𝑎

1√
2𝜋𝑒 −𝑧2

2 𝑑𝑧

2.4.4.2 Converting the bionmial Formula to a Normal Form

Stirling appoximation: 𝑛! ≈
√

2𝜋𝑛 (𝑛
𝑒 )𝑛

Appprox: (𝑛
𝑘) ≈

√
2𝜋𝑛( 𝑛

𝑒 )𝑛

√
2𝜋𝑛( 𝑘

𝑒 )𝑘⋅√2𝜋(𝑛−𝑘)( 𝑛−𝑘
𝑒 )𝑛−𝑘

simplifies to: (𝑛
𝑘) = 1

√2𝜋𝑛𝑝(1−𝑝)𝑒
− (𝑘−𝑛𝑝)2

2𝑛𝑝(1−𝑝)

substituting 𝑝 = 0.5: 𝑃 (𝑋 = 𝑘) ≈ 1
𝜎

√
2𝜋𝑒− (𝑘−𝜇)2

2𝜎2

Which is the Probability Density Function

2.4.5 The drive shaft exercise - Normal Distribution

group04 group05

group01 group02 group03

11.5 12.0 12.5 13.0 11.5 12.0 12.5 13.0

11.5 12.0 12.5 13.0
0
5

10
15
20
25

0

5

10

15

0
20
40
60
80

0

10

20

0

10

20

30

diameter

co
un

t

Normal Distribution Specification lower limit nominal upper limit

The drive shaft data with overlayed normal distributions

Figure 2.14: The drive shaft data with the respective normal distributions.

In Figure 2.14 the drive shaft data is shown for each group in a histogram. As an
overlay, the respective normal distribution (with the groups ̄𝑥, 𝑠𝑑) is overlayed. If the
data is normally distributed, is a different question.
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2.5 Probability Density Function (PDF)

Figure 2.15: A visual represenstation of the PDF for the normal distribution.

𝑓(𝑥) = 1
𝜎

√
2𝜋𝑒− 1

2 ( 𝑥−𝜇
𝜎 )2 (2.3)

A probability density function (PDF) is a mathematical function that describes the like-
lihood of a continuous random variable taking on a particular value. Unlike discrete
probability distributions, which assign probabilities to specific values of a discrete ran-
dom variable, a PDF describes the relative likelihood of the variable falling within a
particular range of values. The total area under the curve of a PDF over its entire range
is equal to 1, indicating that the variable must take on some value within that range. In
other words, the integral of the PDF over its entire domain equals 1. The probability of
a continuous random variable falling within a specific interval is given by the integral of
the PDF over that interval.

2.6 Cumulative Density Function (CDF)

A cumulative density function (CDF), also known as a cumulative distribution function,
describes the probability that a random variable will take on a value less than or equal
to a given point. It is the integral of the PDF from negative infinity to a certain value.
The CDF provides a comprehensive view of the probability distribution of a random
variable by showing how the probability accumulates as the value of the random variable
increases. Unlike the PDF, which gives the probability density at a particular point, the
CDF gives the cumulative probability up to that point.
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2.7 Likelihood and Probability

Figure 2.16: A visual represenstation of the CDF for the normal distribution.

𝑧 = 𝑥 − 𝜇
𝜎

𝜑(𝑥) = 1
2𝜋𝑒 −𝑧2

2 (2.4)

𝜙(𝑥) = ∫ 1
2𝜋𝑒 −𝑥2

2 𝑑𝑥 (2.5)

lim
𝑥→∞

𝜙(𝑥) = 1
lim

𝑥→−∞
𝜙(𝑥) = 0

2.7 Likelihood and Probability

Likelihood refers to the chance or plausibility of a particular event occurring given
certain evidence or assumptions. It is often used in statistical inference, where
it indicates how well a particular set of parameters (or hypotheses) explain the
observed data. Likelihood is a measure of how compatible the observed data are
with a specific hypothesis or model.

Probability represents the measure of the likelihood that an event will occur. It is
a quantification of uncertainty and ranges from 0 (indicating impossibility) to
1 (indicating certainty). Probability is commonly used to assess the chances of
different outcomes in various scenarios.

In summary, while both likelihood and probability deal with the chance of events occur-
ring, likelihood is often used in the context of comparing different hypotheses or models
based on observed data, while probability is more broadly used to quantify the chances
of events happening in general.
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Figure 2.17: The subtle difference between likelihood and probability.

50
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Figure 2.18: What a 𝜒2 distribution reprepresents and how it relates to a the normal
distribution.

The 𝜒2 distribution is a continuous probability distribution that is widely used in statis-
tics (Taboga 2017). It is often used to test hypotheses about the independence of cate-
gorical variables.
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𝜒2 =
𝑛

∑
𝑘=1

(𝑂𝑘 − 𝐸𝑘)2

𝐸𝑘
(2.6)

The connection between the chi-squared distribution and sample variance holds signifi-
cant importance in statistics.

1. Distribution of Sample Variance: When calculating the sample variance from
a dataset, it follows a chi-squared distribution. Specifically, for a random sample
from a normally distributed population with mean 𝜇0 and variance 𝜎2

0, the sample
variance (adjusted for bias) divided by 𝜎2

0 follows a 𝜒2 distribution with 𝑛 − 1
degrees of freedom, where 𝑛 is the sample size.

2. Hypothesis Testing: In statistical analysis, hypothesis testing is a common
technique for making inferences about populations using sample data. The 𝜒2

distribution plays a crucial role in hypothesis testing, especially when comparing
variances between samples.

• 𝜒2 Test for Variance: The 𝜒2 distribution is used to test whether the
variance of a sample matches a hypothesized variance. This is applicable
in various scenarios, such as quality control, to assess the consistency of a
manufacturing process.

3. Confidence Intervals: When estimating population parameters like population
variance, it’s essential to establish confidence intervals. The 𝜒2 distribution aids
in constructing these intervals, allowing researchers to quantify the uncertainty
associated with their parameter estimates.

4. Model Assessment: In regression analysis, the 𝜒2 distribution is related to the
F-statistic, which assesses the overall significance of a regression model. It helps
determine whether the regression model is a good fit for the data.

In summary, the link between the chi-squared distribution and sample variance is funda-
mental in statistical analysis. It empowers statisticians and analysts to make informed
decisions about population parameters based on sample data and evaluate the validity
of statistical models. Understanding this relationship is essential for those working with
data and conducting statistical investigations.

2.8.1 The drive shaft exercise - Chi2 Distribution

In Figure 2.19 the squared standad deviation for every datapoint (from the stanardized
data) is shown as a histogram for every group with an overlayed (and scaled) density plot.
In the background of every group the theoretical 𝜒2-distribution with 𝑑𝑜𝑓 = 1 is plotted
to visually compare the empirical distribution of the datapoints to the theorectial.
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Figure 2.19: The 𝜒2 disitribution of the drive shaft data.

2.9 t - Distribution

The t-distribution, also known as the Student’s t-distribution (Student 1908), is a prob-
ability distribution that plays a significant role in statistics2. It is a symmetric distribu-
tion with a bell-shaped curve, similar to the normal distribution, but with heavier tails.
The key significance of the t-distribution lies in its application to inferential statistics,
particularly in hypothesis testing and confidence interval estimation.

1. Small Sample Sizes: When dealing with small sample sizes (typically less than
30), the t-distribution is used to make inferences about population parameters,
such as the mean. This is crucial because the normal distribution assumptions are
often violated with small samples.

2. Accounting for Variability: The t-distribution accounts for the variability in-
herent in small samples. It provides wider confidence intervals and more conserva-
tive hypothesis tests compared to the normal distribution, making it more suitable
for situations where sample size is limited.

3. Degrees of Freedom: The shape of the t-distribution is determined by a parame-
ter called degrees of freedom (df). As the df increases, the t-distribution approaches

2William Sealy Gosset (June 13, 1876 - October 16, 1937) was a pioneering statistician known for
developing the t-distribution, a key tool in modern statistical analysis.
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Figure 2.20: PDF of t-distribution with varying 𝑑𝑜𝑓

the normal distribution. When df is small, the tails of the t-distribution are fatter,
allowing for greater uncertainty in estimates.

Statisticians found that if they took samples of a constant size from a normal population,
computed a statistic called a t-score for each sample, and put those into a relative
frequency distribution, the distribution would be the same for samples of the same size
drawn from any normal population. The shape of this sampling distribution of t’s varies
somewhat as sample size varies, but for any 𝑛, it is always the same. For example, for
samples of 5, 90% of the samples have t-scores between −1.943 and +1.943, while for
samples of 15, 90% have t-scores between ±1.761. The bigger the samples, the narrower
the range of scores that covers any particular proportion of the samples (2.10) (Note the
similarity to (2.2)). Since the t-score is computed for every 𝑥𝑖 the resulting sampling
distribution is called the t-disitribution.

𝑡𝑖 = 𝑥𝑖 − 𝜇𝑜
𝑠𝑑/√𝑛 (2.7)

In Figure 2.20 it is shown, that with increasing 𝑑𝑜𝑓 (in this case sample size), the t-
distribution approximates a normal distribution (gray area). Figure 2.20 also shows an
example of the t-distribution in action. Of all possible samples with 9 𝑑𝑜𝑓 0.025 (21

2%)
of those samples would have t-scores greater than 2.262, and .975 (97.5%) would have
t-scores less than 2.262. The advantage of the t-score and t-distribution is clearly visi-
ble. All these values can be computed from sampled data, the population can remain
estimated (2.10).
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2.9 t - Distribution

2.9.1 The drive shaft exercise - t-Distribution

The t-score computation and the z-standardization look very familiar. While the z-score
calculation needs some population parameters, the t-score calculation does not need
such. It therefore allows us, to estimate population parameters based on a sample - a
very frequent use case in statistics.

Suppose we have some data (maybe the drive shaft exercise?) with which calculations
can be done. First, the mean ̄𝑥 and 𝑠𝑑 is calculated according to (1.13) and (1.14). After
this, the confidence level (we will get to this later in more detail) is specified. A value
of 95% is a common choice of cl.

𝑐𝑖 = 0.95 (for a 95% confidence level) (2.8)

Then the Standard Error (SE) is calculated using (2.9), which takes the 𝑠𝑑 and 𝑛 of a
sample into account (notice, how we did not use any population estimation?).

𝑆𝐸 = 𝑠𝑑√𝑛 (2.9)

In the next step, the critical t-score is calculated using the cl as shown in (2.10). qt in
this case returns the value of the inverse cumulative function of the t-distribution given
a certain random variable (or datapoint 𝑥𝑖) and 𝑛 − 1 dof. Think of it as an automated
look up in long statistical tables.

𝑡𝑠𝑐𝑜𝑟𝑒 = 𝑞𝑡 (1 − 𝑐𝑖
2 , 𝑑𝑓 = 𝑛 − 1) (2.10)

With this, the margin of error can be calculated using the SE and the t-score as shown
in (2.11).

𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 = 𝑡𝑠𝑐𝑜𝑟𝑒 × 𝑆𝐸 (2.11)

In the last step the Confidence Interval is calculated for the lower and the upper bound
with (2.12) and (2.13).

𝑙𝑜 = ̄𝑥 − 𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 (2.12)
ℎ𝑖 = ̄𝑥 + 𝑚𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟 (2.13)
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It all looks and feels very similar to using the normal disitrbution. Why this is the
case, is shown in Figure 2.21. In ?@fig-ds-t-1 the raw dataset is shown with the
underlayed specification limits for the manufacturing of the drive shaft. For some groups
the judgement if the drive shaft is wihtin specification is quite clear (group 1, group
2 and group 5). For the other groups, this can not be done so easily. For the drive
shaft data, we of course now some population data, therefore the normal distribution
can be compared to the t-distribution. This is done in ?@fig-ds-t-2. On the x-axis
the diameter is shown, the y-axis depicts the groups (as before). The distribution on
top of the estimated parameters is the population (normal distribution), the distribution
on the bottom follow a t-distribution. With 𝑛 > 30 (as for this dataset), the difference
between disitrbution is very small, further showcasing the use of the t-distribution (also
see Figure 2.20 for comparison).

SE: 1.2

SE: 1.24

SE: 1.3SE: 1.15

SE: 1.2

group01

group02
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group04

group05

11.5 12.0 12.5 13.0
diameter

normal spec t

mean and sd plot of the drive shaft data

Figure 2.21: The drive shaft data with normal disitribution, t-distribution and confidence
intervalls using the t-distribution

2.10 F - Statistics

F-statistics, also known as the F-test or F-ratio, is a statistical measure used in analysis
of variance and regression analysis (Taboga 2017). It assesses the ratio of two variances,
indicating the extent to which the variability between groups or models is greater than
the variability within those groups or models. The F-statistic plays a crucial role in
hypothesis testing and model comparison.
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Figure 2.22: The influence of 𝑑𝑜𝑓1 and 𝑑𝑜𝑓2 on the density in the F-disitribution

Significance of F-statistics: The significance of the F-statistic lies in its ability to help
researchers determine whether the differences between group means or the goodness-
of-fit of a regression model are statistically significant. In ANOVA, a high F-statistic
suggests that at least one group mean differs significantly from the others, while in
regression analysis, it indicates whether the regression model as a whole is a good fit for
the data.

Applications of F-statistics: 1. Analysis of Variance (ANOVA): F-statistics are
extensively used in ANOVA to compare means across two or more groups. It helps
determine whether there are significant differences among the means of these groups.
For example, an ANOVA might be used to compare the mean test scores of students
taught using different teaching methods.

2. Regression Analysis: F-statistics are used in regression analysis to assess the
overall significance of a regression model. Specifically, in multiple linear regression,
it helps determine whether the model, which includes multiple predictor variables,
is better at explaining the variance in the response variable compared to a model
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2 Statistical Distributions

with no predictors. It tests the null hypothesis that all coefficients of the model
are equal to zero.

The degrees of freedom in an F-distribution refer to the two sets of numbers that deter-
mine the shape and properties of the distribution (Figure 2.22).

Numerator Degrees of Freedom (𝑑𝑜𝑓1): The numerator degrees of freedom, often de-
noted as 𝑑𝑜𝑓1, is associated with the variability between groups or models in statistical
analyses (Figure 2.22a - horizontal axis). In the context of ANOVA, it represents the dof
associated with the differences among group means. In regression analysis, it is related
to the number of predictors or coefficients being tested simultaneously.

Denominator Degrees of Freedom (𝑑𝑜𝑓2): The denominator degrees of freedom, often
denoted as 𝑑𝑜𝑓2, is associated with the variability within groups or models (Figure 2.22b
- vertical axis). In ANOVA, it represents the degrees of freedom associated with the
variability within each group. In regression analysis, it is related to the error or residual
degrees of freedom, indicating the remaining variability not explained by the model.

The F-distribution is used to compare two variances: one from the numerator and the
other from the denominator. The F-statistic, calculated as the ratio of these variances,
follows an F-distribution (2.14).

𝑓(𝑥; 𝑑𝑜𝑓1, 𝑑𝑜𝑓2) =
Γ (𝑑𝑜𝑓1+𝑑𝑜𝑓2

2 )
Γ (𝑑𝑜𝑓1

2 ) Γ (𝑑𝑜𝑓2
2 )

(𝑑𝑜𝑓1
𝑑𝑜𝑓2

)
𝑑𝑜𝑓1

2 𝑥 𝑑𝑜𝑓1
2 −1

(1 + 𝑑𝑜𝑓1
𝑑𝑜𝑓2

𝑥)
𝑑𝑜𝑓1+𝑑𝑜𝑓2

2
(2.14)

𝐹𝑚,𝑛 = 𝜒2
𝑚/𝑚

𝜒2𝑛/𝑛 (2.15)

In practical terms: A higher numerator degrees of freedom (𝑑𝑜𝑓1) suggests that there are
more groups or predictors being compared, which may result in larger F-statistic values.
A higher denominator degrees of freedom (𝑑𝑜𝑓2) implies that there is more data within
each group or model, which may lead to smaller F-statistic values. The F-distribution
is right-skewed and always positive. It has different shapes depending on the values
of 𝑑𝑜𝑓1 and 𝑑𝑜𝑓2 (Figure 2.22b). The exact shape is determined by these degrees of
freedom and cannot be altered by changing sample sizes or data values (Figure 2.22b).
Researchers use F-distributions to conduct hypothesis tests, such as F-tests in ANOVA
and F-tests in regression, to determine if there are significant differences between groups
or if a regression model is statistically significant.

In summary, degrees of freedom in the F-distribution are critical in hypothesis testing
and model comparisons. They help quantify the variability between and within groups
or models, allowing statisticians to assess the significance of observed differences and
make informed statistical decisions.
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2.11 Interconnections

2.11 Interconnections

1. Normal Distribution The Normal Distribution is characterized by its mean (𝜇)
and standard deviation (𝜎), see Figure 2.23. It serves as the foundation for many
statistical analyses.

2. Standardized Normal Distribution The Standardized Normal Distribution,
denoted as 𝑍 ∼ 𝑁(0, 1), is a special case of the normal distribution. It has a mean
(𝜇) of 0 and a standard deviation (𝜎) of 1. It is obtained by standardizing a normal
distribution variable 𝑋: 𝑍 = 𝑋−𝜇

𝜎 (Figure 2.23).

3. t Distribution The t Distribution is related to the normal distribution and de-
pends on degrees of freedom. As dof increases, the t-distribution approaches the
standard normal distribution (Figure 2.23).

4. Chi-Square Distribution The Chi-Square Distribution is indirectly connected
to the normal distribution through the concept of “sum of squared standard nor-
mals.” When standard normal random variables (𝑍) are squared and summed, the
resulting distribution follows a chi-square distribution.

5. F Distribution The F Distribution arises from the ratio of two independent chi-
square distributed random variables. It is used for comparing variances between
groups in statistical tests like ANOVA.

Figure 2.23: The distributions are interconnected in several different ways.
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2.12 Weibull - Distribution
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Figure 2.24: The weibull distribution and the influence of 𝛽 and 𝜆

The Weibull distribution is a probability distribution frequently used in statistics and
reliability engineering to model the time until an event, particularly failures or lifetimes.
It is named after Wallodi Weibull3, who developed it in the mid-20th century (Weibull
1951).

The Weibull distribution is characterized by two parameters:

Shape Parameter (𝛽): This parameter determines the shape of the distribution curve
and can take on values greater than 0. Depending on the value of 𝛽, the Weibull
distribution can exhibit different behaviors:

If 𝛽 < 1, the distribution has a decreasing failure rate, indicating that the probability of
an event occurring decreases over time. This is often associated with “infant mortality”
or early-life failures. If 𝛽 = 1, the distribution follows an exponential distribution with
a constant failure rate over time. If 𝛽 > 1, the distribution has an increasing failure
rate, suggesting that the event becomes more likely as time progresses. This is often
associated with “wear-out” failures.

3Waloddi Weibull (1887–1979) was a Swedish engineer and statistician known for his work on the
Weibull distribution, which is widely used in reliability engineering and other fields.
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2.13 Poisson - Distribution

Scale Parameter (𝜆): This parameter represents a characteristic scale or location on
the time axis. It influences the position of the distribution on the time axis. A larger 𝜆
indicates that events are more likely to occur at later times.

Applications: - Reliability Engineering: The Weibull distribution is extensively used
in reliability engineering to assess the lifetime and failure characteristics of components
and systems. Engineers can estimate the distribution parameters from data to predict
product reliability, set warranty periods, and plan maintenance schedules.

• Survival Analysis: In medical research and epidemiology, the Weibull distribution
is employed to analyze survival data, such as time until the occurrence of a disease
or death. It helps in modeling and understanding the progression of diseases and
the effectiveness of treatments.

• Economics and Finance: The Weibull distribution is used in finance to model the
time between financial events, like market crashes or loan defaults. It can provide
insights into risk assessment and portfolio management.

2.12.1 The drive shaft exercise - Weibull distribution

The weibull distribution can be applied to estimate the probability of a part to fail after
a given time. Suppose there have been 𝑛 = 100 drive shafts produced. In order to
assure that the assembled drive shaft would last during their service time, they have
been tested in a test-stand that mimics the mission profile4 of the product. This process
is called qualification and a big part of any product development (Meyna 2023). The
measured hours are shown in Figure 2.25 in a histogram of the data. On the x-axis
the Time to failureis shown, while the y-axis shows the number of parts that failed
within the time. They histogram plot is overlayed with an empirical density plot as a
solid line, as well as the theoretical distribution as a dotted line (Luckily, we know the
distribution parameters).

2.13 Poisson - Distribution

The Poisson distribution is a probability distribution commonly used in statistics to
model the number of events that occur within a fixed interval of time or space, given a
known average rate of occurrence. It is named after the French mathematician Siméon
Denis Poisson5.

4A mission profile for parts is a detailed plan specifying how specific components in a system should
perform, considering factors like environment, performance, safety, and compliance.

5Siméon Denis Poisson (1781-1840) was a notable French mathematician, renowned for his work in
probability theory and mathematical physics.
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Figure 2.25: The measured hours how long the drive shafts lasted in the test stand.

The Poisson distribution is an applicable probability model in such situations under
specific conditions:

1. Independence: Events should occur independently of each other within the specified
interval of time or space. This means that the occurrence of one event should not affect
the likelihood of another event happening.

2. Constant Rate: The average rate (lambda, denoted as 𝜆) at which events occur
should be constant over the entire interval. In other words, the probability of an event
occurring should be the same at any point in the interval.

3. Discreteness: The events being counted must be discrete in nature. This means
that they should be countable and should not take on continuous values.

4. Rare Events: The Poisson distribution is most appropriate when the events are
rare, meaning that the probability of more than one event occurring in an infinitesimally
small interval is negligible. This assumption helps ensure that the distribution models
infrequent events.

5. Fixed Interval: The interval of time or space in which events are counted should
be fixed and well-defined. It should not vary or be open-ended.

6. Memorylessness: The Poisson distribution assumes that the probability of an event
occurring in the future is independent of past events. In other words, it does not take
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into account the history of events beyond the current interval.

7. Count Data: The Poisson distribution is most suitable for count data, where you
are interested in the number of events that occur in a given interval.

In the context of a Poisson distribution, the parameter lambda (𝜆) represents the average
rate of events occurring in a fixed interval of time or space. It is a crucial parameter
that helps define the shape and characteristics of the Poisson distribution.

Average Rate: 𝜆 is a positive real number that represents the average or expected
number of events that occur in the specified interval. It tells you, on average, how many
events you would expect to observe in that interval.

Rate of Occurrence: 𝜆 quantifies the rate at which events happen. A higher value of
𝜆 indicates a higher rate of occurrence, while a lower value of 𝜆 indicates a lower rate.

Shape of the Distribution: The value of 𝜆 determines the shape of the Poisson
distribution. Specifically:

When 𝜆 is small, the distribution is skewed to the right and is more concentrated toward
zero (Figure 2.26). When 𝜆 is moderate, the distribution approaches a symmetric bell
shape (Figure 2.26). When 𝜆 is large, the distribution becomes increasingly similar to a
normal distribution(Figure 2.26).
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Figure 2.26: The poisson distribution with different 𝜆 values.

2.14 Gamma - Distribution

The gamma distribution is a probability distribution that is often used in statistics to
model the waiting time until a Poisson process reaches a certain number of events. It is a
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continuous probability distribution with two parameters, typically denoted as 𝛼 (shape
parameter) and 𝛽 (rate parameter).

Key points about the gamma distribution:

1. It is often used to model the waiting times for events that occur at a constant rate,
such as the time between arrivals in a Poisson process.

2. The exponential distribution is a special case of the gamma distribution when
𝛼 = 1 (Figure 2.27).

3. The gamma distribution is right-skewed for 𝛼 > 1 and left-skewed for 0 < 𝛼 < 1
(Figure 2.27).

4. The mean of the gamma distribution is 𝛼
𝛽 , and its variance is 𝛼

𝛽2 (Figure 2.27).

It is widely used in various fields, including reliability analysis, queuing theory, and
finance.

The connection to other distributions:

Exponential Distribution: The exponential distribution is a special case of the gamma
distribution with 𝛼 = 1.
𝜒2: When 𝛼 is an integer, the gamma distribution with shape parameter 𝛼 is equivalent
to the chi-squared distribution with 2𝛼 degrees of freedom.

Erlang Distribution: The Erlang distribution is a specific case of the gamma distribu-
tion where 𝛼 is an integer, representing the sum of 𝛼 exponentially distributed random
variables.
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Figure 2.27: The Gamma distribution with varying 𝛼 (shape) and 𝛽 (scale)
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3.1 Sample Size

3.1.1 Standard Error
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Figure 3.1: The SE for varying sample sizes 𝑛

Standard error is a statistical measure that quantifies the variation or uncertainty in
sample statistics, particularly the mean (average). It is a valuable tool in inferential
statistics and provides an estimate of how much the sample mean is expected to vary
from the true population mean.

𝑆𝐸 = 𝑠𝑑√𝑛 (3.1)
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A smaller standard error indicates that the sample mean is likely very close to the
population mean, while a larger standard error suggests greater variability and less
precision in estimating the population mean. Standard error is crucial when constructing
confidence intervals and performing hypothesis tests, as it helps in assessing the reliability
of sample statistics as estimates of population parameters.

Variance vs. Standard Deviation: The standard error formula is based on the stan-
dard deviation of the sample, not the variance. The standard deviation is the square
root of the variance.

Scaling of Variability: The purpose of the standard error is to measure the variability
or spread of sample means. The square root of the sample size reflects how that vari-
ability decreases as the sample size increases. When the sample size is larger, the sample
mean is expected to be closer to the population mean, and the standard error becomes
smaller to reflect this reduced variability.

Central Limit Theorem: The inclusion of
√𝑛 in the standard error formula is closely

tied to the Central Limit Theorem, which states that the distribution of sample means
approaches a normal distribution as the sample size increases.

√𝑛 helps in this context
to ensure that the standard error appropriately reflects the distribution’s properties.
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3.2 Random Sampling

3.2 Random Sampling

Figure 3.2: The idea of random sampling (Dan Kernler).

• Definition: Selecting a sample from a population in a purely random manner,
where every individual has an equal chance of being chosen.

• Advantages:

– Eliminates bias in selection.
– Results are often representative of the population.

• Disadvantages:

– Possibility of unequal representation of subgroups.
– Time-consuming and may not be practical for large populations.
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3.3 Stratified Sampling

Figure 3.3: The idea of stratified sampling (Dan Kernler)

• Definition: Dividing the population into subgroups or strata based on certain
characteristics and then randomly sampling from each stratum.

• Advantages:

– Ensures representation from all relevant subgroups.
– Increased precision in estimating population parameters.

• Disadvantages:

– Requires accurate classification of the population into strata.
– Complexity in implementation and analysis.
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3.4 Systematic Sampling

Figure 3.4: The idea of systematic sampling (Dan Kernler)

• Definition: Choosing every kth individual from a list after selecting a random
starting point.

• Advantages:

– Simplicity in execution compared to random sampling.
– Suitable for large populations.

• Disadvantages:

– Susceptible to periodic patterns in the population.
– If the periodicity aligns with the sampling interval, it can introduce bias.
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3.5 Cluster Sampling

Figure 3.5: The idea of clustered sampling (Dan Kernler).

• Definition: Dividing the population into clusters, randomly selecting some clus-
ters, and then including all individuals from the chosen clusters in the sample.

• Advantages:

– Cost-effective, especially for geographically dispersed populations.
– Reduces logistical challenges compared to other methods.

• Disadvantages:

– Increased variability within clusters compared to other methods.
– Requires accurate information on cluster characteristics.
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3.5 Cluster Sampling

Table 3.1: The starwars dataset

name height mass hair_color
Length:87 Min. : 66.0 Min. : 15.00 Length:87
Class :character 1st Qu.:167.0 1st Qu.: 55.60 Class :character
Mode :character Median :180.0 Median : 79.00 Mode :character

Mean :174.6 Mean : 97.31
3rd Qu.:191.0 3rd Qu.: 84.50
Max. :264.0 Max. :1358.00
NA's :6 NA's :28

skin_color eye_color birth_year sex
Length:87 Length:87 Min. : 8.00 Length:87
Class :character Class :character 1st Qu.: 35.00 Class :character
Mode :character Mode :character Median : 52.00 Mode :character

Mean : 87.57
3rd Qu.: 72.00
Max. :896.00
NA's :44

gender homeworld species
Length:87 Length:87 Length:87
Class :character Class :character Class :character
Mode :character Mode :character Mode :character
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3.6 Example - The Star Wars dataset

3.6.1 Get to know the data

3.6.2 Simple Random Sampling

starwars_srswor <- starwars %>%
sample_n(size = 5)

starwars_srswor

# A tibble: 5 x 11
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>

1 Jek Tono~ 180 110 brown fair blue NA <NA> <NA>
2 Rey NA NA brown light hazel NA fema~ femin~
3 Shmi Sky~ 163 NA black fair brown 72 fema~ femin~
4 C-3PO 167 75 <NA> gold yellow 112 none mascu~
5 Yoda 66 17 white green brown 896 male mascu~
# i 2 more variables: homeworld <chr>, species <chr>

3.6.3 Simple Random Sampling with replacment

starwars_srswr <- starwars %>%
sample_n(size = 5,

replace = TRUE)
starwars_srswr

# A tibble: 5 x 11
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>

1 Zam Wese~ 168 55 blonde fair, gre~ yellow NA fema~ femin~
2 Ben Quad~ 163 65 none grey, gre~ orange NA male mascu~
3 Ben Quad~ 163 65 none grey, gre~ orange NA male mascu~
4 Mas Amed~ 196 NA none blue blue NA male mascu~
5 Cordé 157 NA brown light brown NA <NA> <NA>
# i 2 more variables: homeworld <chr>, species <chr>

72



3.6 Example - The Star Wars dataset

3.6.4 Sampling with replacment, sample larger than original data

starwars_srswr2 <- starwars %>%
sample_n(size = 200,

replace = TRUE)
starwars_srswr2

# A tibble: 200 x 11
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>

1 Jocasta~ 167 NA white fair blue NA fema~ femin~
2 Ric Olié 183 NA brown fair blue NA male mascu~
3 IG-88 200 140 none metal red 15 none mascu~
4 Jocasta~ 167 NA white fair blue NA fema~ femin~
5 IG-88 200 140 none metal red 15 none mascu~
6 Cordé 157 NA brown light brown NA <NA> <NA>
7 Poe Dam~ NA NA brown light brown NA male mascu~
8 Palpati~ 170 75 grey pale yellow 82 male mascu~
9 Padmé A~ 185 45 brown light brown 46 fema~ femin~
10 Rey NA NA brown light hazel NA fema~ femin~
# i 190 more rows
# i 2 more variables: homeworld <chr>, species <chr>

mean(starwars$height, na.rm = TRUE)

[1] 174.6049

mean(starwars_srswr2$height, na.rm = TRUE)

[1] 173.172

3.6.5 Systematic Sampling

Sample always the 5𝑡ℎ.

starwars_syst <- starwars %>%
slice(seq(sample(1:5, 1),

nrow(starwars),
by = 5))

starwars_syst
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# A tibble: 17 x 11
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>

1 Darth V~ 202 136 none white yellow 41.9 male mascu~
2 Biggs D~ 183 84 black light brown 24 male mascu~
3 Han Solo 180 80 brown fair brown 29 male mascu~
4 Yoda 66 17 white green brown 896 male mascu~
5 Lando C~ 177 79 black dark brown 31 male mascu~
6 Wicket ~ 88 20 brown brown brown 8 male mascu~
7 Padmé A~ 185 45 brown light brown 46 fema~ femin~
8 Watto 137 NA black blue, grey yellow NA male mascu~
9 Bib For~ 180 NA none pale pink NA male mascu~
10 Ben Qua~ 163 65 none grey, gre~ orange NA male mascu~
11 Adi Gal~ 184 50 none dark blue NA fema~ femin~
12 Gregar ~ 185 85 black dark brown NA <NA> <NA>
13 Barriss~ 166 50 black yellow blue 40 fema~ femin~
14 Zam Wes~ 168 55 blonde fair, gre~ yellow NA fema~ femin~
15 R4-P17 96 NA none silver, r~ red, blue NA none femin~
16 Tarfful 234 136 brown brown blue NA male mascu~
17 Rey NA NA brown light hazel NA fema~ femin~
# i 2 more variables: homeworld <chr>, species <chr>

3.6.6 Stratified Sampling

table(starwars$sex)

female hermaphroditic male none
16 1 60 6

starwars_strat <- starwars %>%
group_by(sex) %>%
sample_frac(size = 0.3)

starwars_strat

# A tibble: 26 x 11
# Groups: sex [4]

name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>

1 Ayla Se~ 178 55 none blue hazel 48 fema~ femin~
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2 Luminar~ 170 56.2 black yellow blue 58 fema~ femin~
3 Jocasta~ 167 NA white fair blue NA fema~ femin~
4 Shmi Sk~ 163 NA black fair brown 72 fema~ femin~
5 Taun We 213 NA none grey black NA fema~ femin~
6 Finn NA NA black dark dark NA male mascu~
7 Rugor N~ 206 NA none green orange NA male mascu~
8 Lobot 175 79 none light blue 37 male mascu~
9 Jar Jar~ 196 66 none orange orange 52 male mascu~
10 Qui-Gon~ 193 89 brown fair blue 92 male mascu~
# i 16 more rows
# i 2 more variables: homeworld <chr>, species <chr>

table(starwars_strat$sex)

female male none
5 18 2

3.6.7 Clustered Sampling

3.7 Bootstrapping

Figure 3.6: The idea of bootstrapping (Biggerj1, Marsupilami)

• Definition: Estimating sample statistic distribution by drawing new samples with
replacement from observed data, providing insights into variability without strict
population distribution assumptions.

• Advantages:

– Non-parametric: Works without assuming a specific data distribution.
– Confidence Intervals: Facilitates easy estimation of confidence intervals.
– Robustness: Reliable for small sample sizes or unknown data distributions.
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Table 3.2: The starwars dataset with clustered sampling

name height mass hair_color
Length:19 Min. : 97.0 Min. : 32.0 Length:19
Class :character 1st Qu.:169.5 1st Qu.: 75.0 Class :character
Mode :character Median :178.0 Median : 79.0 Mode :character

Mean :173.9 Mean : 171.2
3rd Qu.:188.0 3rd Qu.: 116.5
Max. :216.0 Max. :1358.0

NA's :4
skin_color eye_color birth_year sex
Length:19 Length:19 Min. : 19.00 Length:19
Class :character Class :character 1st Qu.: 37.00 Class :character
Mode :character Mode :character Median : 47.00 Mode :character

Mean : 93.29
3rd Qu.: 72.00
Max. :600.00
NA's :6

gender homeworld species
Length:19 Length:19 Length:19
Class :character Class :character Class :character
Mode :character Mode :character Mode :character
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• Disadvantages:

– Computationally Intensive: Resource-intensive for large datasets.
– Results quality relies on the representativeness of the initial sample (garbage

in - garbage out).
– Cannot compensate for inadequate information in the original sample.
– Not Always Optimal: Traditional methods may be better in cases meeting

distribution assumptions.
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4 Inferential Statistics

Inferential statistics involves making predictions, generalizations, or inferences about a
population based on a sample of data. These techniques are used when researchers want
to draw conclusions beyond the specific data they have collected. Inferential statistics
help answer questions about relationships, differences, and associations within a popu-
lation.

4.1 Hypothesis Testing - Basics

Figure 4.1: We are hypotheses.

Null Hypothesis (H0): This is the default or status quo assumption. It represents the
belief that there is no significant change, effect, or difference in the production process.
It is often denoted as a statement of equality (e.g., the mean production rate is equal to
a certain value).

Alternative Hypothesis (Ha): This is the claim or statement we want to test. It
represents the opposite of the null hypothesis, suggesting that there is a significant
change, effect, or difference in the production process (e.g., the mean production rate is
not equal to a certain value).
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4.1.1 The drive shaft exercise - Hypotheses

During the QC of the drive shaft 𝑛 = 100 samples are taken and the diameter is measured
with an accuracy of ±0.01𝑚𝑚. Is the true mean of all produced drive shafts within the
specification?

For this we can formulate the hypotheses.

H0: The drive shaft diameter is within the specification.
Ha: The drive shaft diameter is not within the specification.

In the following we will explore, how to test for these hypotheses.

4.2 Confidence Intervals

A Confidence Interval is a statistical concept used to estimate a range of values within
which a population parameter, such as a population mean or proportion, is likely to
fall. It provides a way to express the uncertainty or variability in our sample data
when making inferences about the population. In other words, it quantifies the level of
confidence we have in our estimate of a population parameter.

Confidence intervals are typically expressed as a range with an associated confidence
level. The confidence level, often denoted as 1 − 𝛼, represents the probability that the
calculated interval contains the true population parameter. Common confidence levels
include 90%, 95%, and 99%.

There are different ways of calculating CI.

1. For the population mean 𝜇0 when the population standard deviation 𝜎2
0 is known

((4.1)).

𝐶𝐼 = 𝑋̄ ± 𝑡 𝜎0√𝑛 (4.1)

• 𝑋̄ is the sample mean.

• 𝑍 is the critical value from the standard normal distribution corresponding to the
desired confidence level (e.g., 1.96 for a 95% confidence interval).

• 𝜎0 is the populations standard deviation

• 𝑛 is the sample size

80
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2.For the population mean 𝜇0 when the population standard deviation 𝜎0 is Unknown
(t-confidence interval), see (4.2).

𝐶𝐼 = 𝑋̄ ± 𝑡 𝑠𝑑√𝑛 (4.2)

• 𝑋̄ is the sample mean.

• 𝑡 is the critical value from the t-distribution with 𝑛 − 1 degrees of freedom corre-
sponding to the desired confidence level

• 𝑠𝑑 is the sample standard deviation

• 𝑛 is the sample size

3. For a population proportion p, see (4.3).

𝐶𝐼 = ̂𝑝 ± 𝑍√ ̂𝑝(1 − ̂𝑝)
𝑛 (4.3)

• ̂𝑝 is the sample proportion

• 𝑍 is the critical value from the standard normal distribution corresponding to the
desired confidence level

• 𝑛 is the sample size

4. The method for calculating confidence intervals may vary depending on the esti-
mated parameter. Estimating a population median or the differences between two
population means, other statistical techniques may be used.

4.2.1 The drive shaft exercise - Confidence Intervals

The 95% CI for the drive shaft data is shown in Figure 4.2. For comparison the histogram
with an overlayed density curve is plotted. The highlighted area shows the minimum
and maximum CI, the calculated mean is shown as a dashed line.
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Figure 4.2: The 95% CI for the drive shaft data.

4.3 Significance Level

The significance level 𝛼 is a critical component of hypothesis testing in statistics. It
represents the maximum acceptable probability of making a Type I error, which is the
error of rejecting a null hypothesis when it is actually true. In other words, 𝛼 is the
probability of concluding that there is an effect or relationship when there isn’t one.
Commonly used significance levels include 0.05(5%), 0.01(1%), and 0.10(10%). The
choice of 𝛼 depends on the context of the study and the desired balance between making
correct decisions and minimizing the risk of Type I errors.

4.4 False negative - risk

The risk for a false negative outcome is called 𝛽 - risk. Is is calculated using statistical
power analysis. Statistical power is the probability of correctly rejecting a null hypothesis
when it is false, which is essentially the complement of beta (𝛽).

𝛽 = 1 − Power (4.4)

4.5 Power Analysis

Statistical power is calculated using software, statistical tables, or calculators specifically
designed for this purpose. Generally speaking: The greater the statistical power, the
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4.5 Power Analysis

greater is the evidence to accept or reject the 𝐻0 based on the study. Power analysis
is also very useful in determining the sample size before the actualy experiments are
conducted. Below is an example for a power calculation for a two-sample t-test.

Power = 1 − 𝛽 = 𝑃 ⎛⎜⎜
⎝

|𝑋̄1 − 𝑋̄2|
√𝑆2

1
𝑛1

+ 𝑆2
2

𝑛2

> 𝑍 𝛼
2

− 𝛿
√𝑆2

1
𝑛1

+ 𝑆2
2

𝑛2

⎞⎟⎟
⎠

1. Effect Size: This represents the magnitude of the effect you want to detect. Larger
effects are easier to detect than smaller ones.

2. Significance Level (𝛼): This is the predetermined level of significance that defines
how confident you want to be in rejecting the null hypothesis (e.g., typically set
at 0.05).

3. Sample Size (𝑛): The number of observations or participants in your study. In-
creasing the sample size generally increases the power of the test.

4. Power (1 − 𝛽): This is the probability of correctly rejecting the null hypothesis
when it is false. Higher power is desirable, as it minimizes the chances of a Type
II error (failing to detect a true effect).

5. Type I Error (𝛼): The probability of incorrectly rejecting the null hypothesis when
it is true. This is typically set at 0.05 or 5% in most studies.

6. Type II Error (𝛽): The probability of failing to reject the null hypothesis when it
is false. Power is the complement of 𝛽 (𝑃𝑜𝑤𝑒𝑟 = 1 − 𝛽).
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Figure 4.3: The coin toss with the respective probabilites (Champely 2020).

H0: The coin is fair and lands heads 50% of the time.
Ha: The coin is loaded and lands heads more than 50% of the time.

pwr.p.test(h = ES.h(p1 = 0.75, p2 = 0.50),
sig.level = 0.05,
power = 0.80,
alternative = "greater")

proportion power calculation for binomial distribution (arcsine transformation)

h = 0.5235988
n = 22.55126

sig.level = 0.05
power = 0.8

alternative = greater

The sample size 𝑛 = 23, meaning 23 coin flips means that the statistical power is 80%
at a 𝛼 = 0.05 significance level (𝛽 = 1 − 𝑝𝑜𝑤𝑒𝑟 = 0.2 ≈ 20%). But what if the sample
size varies? This is the subject of Figure 4.4. On the x-axis the power is shown (or
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4.6 p-value

the 𝛽-risk on the upper x-axis), whereas the sample size n is depicted on the y-axis.
To increase the power by 10% to be 90% the sample sized must be increased by 11. A
further power increase of 5% would in turn mean an increase in sample size to be 𝑛 = 40.
This highlights the non-linear nature of power calculations and why they are important
for experimental planning.

0%5%10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%100%

← β risk

→  Power

sa
m

pl
e 

si
ze

 n

Power and β risk for the example

Figure 4.4: The power vs. the sample size

4.5.1 A word on Effect Size

Cohen (Cohen 2013) describes effect size as “the degree to which the null hypothesis is
false.” In the coin flipping example, this is the difference between 75% and 50%. We
could say the effect was 25% but recall we had to transform the absolute difference in
proportions to another quantity using the ES.h function. This is a crucial part of doing
power analysis correctly: An effect size must be provided on the expected scale. Doing
otherwise will produce wrong sample size and power calculations.

When in doubt, Conventional Effect Sizes can be used. These are pre-determined effect
sizes for “small”, “medium”, and “large” effects, see Cohen (2013).
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Figure 4.5: The power vs. the sample size for different effect sizes

4.6 p-value

The p-value is a statistical measure that quantifies the evidence against a null hypothesis.
It represents the probability of obtaining test results as extreme or more extreme than
the ones observed, assuming the null hypothesis is true. In hypothesis testing, a smaller
p-value indicates stronger evidence against the null hypothesis. If the p-value is less
than or equal to 𝛼 (𝑝 ≤ 𝛼), you reject the null hypothesis. If the p-value is greater than
𝛼 ( 𝑝 > 𝛼 ), you fail to reject the null hypothesis. A common threshold for determining
statistical significance is to reject the null hypothesis when 𝑝 ≤ 𝛼.

The p-value however does not give an assumption about the effect size, which can be quite
insignificant (Nuzzo 2014). While the p-value therefore is the probability of accepting 𝐻𝑎
as true, it is not a measure of magnitude or relative importance of an effect. Therefore the
CI and the effect size should always be reported with a p-value. Some Researchers even
claim that most of the research today is false (Ioannidis 2005). In practice, especially in
the manufacturing industry, the p-value and its use is still popular. Before implementing
any measures in a series production, those questions will be asked. The confident and
reliable engineer asks them beforehand and is always his own greatest critique.
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Figure 4.6: Type I and Type II error in the context of inferential statistics.

4.7 Statistical errors

• Type I Error (False Positive, see Figure 4.7):

A Type I error occurs when a null hypothesis that is actually true is rejected. In other
words, it’s a false alarm. It is concluded that there is a significant effect or difference
when there is none. The probability of committing a Type I error is denoted by the
significance level 𝛼. Example: Imagine a drug trial where the null hypothesis is that
the drug has no effect (it’s ineffective), but due to random chance, the data appears to
show a significant effect, and you incorrectly conclude that the drug is effective (Type I
error).

• Type II Error (False Negative, see Figure 4.7):

A Type II error occurs when a null hypothesis that is actually false is not rejected. It
means failing to detect a significant effect or difference when one actually exists. The
probability of committing a Type II error is denoted by the symbol 𝛽. Example: In a
criminal trial, the null hypothesis might be that the defendant is innocent, but they are
actually guilty. If the jury fails to find enough evidence to convict the guilty person, it
is a Type II error.

Type I Error is falsely concluding, that there is an effect or difference when there is none
(false positive). Type II Error failing to conclude that there is an effect or difference
when there actually is one (false negative).
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Figure 4.7: The statistical Errors (Type I and Type II).

The relationship between Type I and Type II errors is often described as a trade-off.
As the risk of Type I errors is reduced by lowering the significance level (𝛼), the risk
of Type II errors (𝛽) is typically increased (Figure 4.6). This trade-off is inherent in
hypothesis testing, and the choice of significance level depends on the specific goals and
context of the study. Researchers often aim to strike a balance between these two types
of errors based on the consequences and costs associated with each. This balance is a
critical aspect of the design and interpretation of statistical tests.
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4.8 Parametric and Non-parametric Tests

Parametric and non-parametric tests in statistics are methods used for analyzing data.
The primary difference between them lies in the assumptions they make about the un-
derlying data distribution:

1. Parametric Tests:

• These tests assume that the data follows a specific probability distribution,
often the normal distribution.

• Parametric tests make assumptions about population parameters like means
and variances.

• They are more powerful when the data truly follows the assumed distribution.
• Examples of parametric tests include t-tests, ANOVA, regression analysis,

and parametric correlation tests.

2. Non-Parametric Tests:

• Non-parametric tests make minimal or no assumptions about the shape of
the population distribution.

• They are more robust and can be used when data deviates from a normal
distribution or when dealing with ordinal or nominal data.

• Non-parametric tests are generally less powerful compared to parametric tests
but can be more reliable in certain situations.

• Examples of non-parametric tests include the Mann-Whitney U test, Wilcoxon
signed-rank test, Kruskal-Wallis test, and Spearman’s rank correlation.

The choice between parametric and non-parametric tests depends on the nature of the
data and the assumptions. Parametric tests are appropriate when data follows the
assumed distribution, while non-parametric tests are suitable when dealing with non-
normally distributed data or ordinal data. Some examples for parametric and non-
parametric tests are given in Table 4.1.

Table 4.1: Some parametric and non-parametric statistical tests.

Parametric Tests Non-Parametric Tests
One-sample t-test Wilcoxon signed rank test
Paired t-test Mann-Whitney U test
Two-sample t-test Kruskal Wallis test
One-Way ANOVA Welch Test
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4.9 Paired and Independent Tests

Figure 4.8: The difference between paired and independent Tests.

1. Paired Statistical Test:

• Paired tests are used when there is a natural pairing or connection between two
sets of data points. This pairing is often due to repeated measurements on the
same subjects or entities.

• They are designed to assess the difference between two related samples, such as
before and after measurements on the same group of individuals.

• The key idea is to reduce variability by considering the differences within each
pair, which can increase the test sensitivity.

2. Independent Statistical Test:

• Independent tests, also known as unpaired or two-sample tests, are used when
there is no inherent pairing between the two sets of data.

• These tests are typically applied to compare two separate and unrelated groups or
samples.

• They assume that the data in each group is independent of the other, meaning
that the value in one group doesn’t affect the value in the other group.

An example for a paired test is, if two groups of data are to be compared in two different
points in time (see Figure 4.8).
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4.10 Distribution Tests

The importance of testing for normality (or other distributions) lies in the fact that
various statistical techniques, such as parametric tests (e.g., t-tests, ANOVA), are based
on the assumption of for example normality. When data deviates significantly from a
normal distribution, using these parametric methods can lead to incorrect conclusions
and biased results. Therefore, it is essential to determine how a dataset is approximately
distributed before applying such techniques.

Several tests for normality are available, with the most common ones being the Kolmogorov-
Smirnov test, the Shapiro-Wilk test, and the Anderson-Darling test. These tests provide
a quantitative measure of how well the data conforms to a normal distribution.

In practice, it is important to interpret the results of these tests cautiously. Sometimes, a
minor departure from normality may not affect the validity of parametric tests, especially
when the sample size is large. In such cases, using non-parametric methods may be an
alternative. However, in cases where normality assumptions are crucial, transformations
of the data or choosing appropriate non-parametric tests may be necessary to ensure the
reliability of statistical analyses.

Tests for normality do not free you from the burden of thinking for yourself.

4.10.1 Quantile-Quantile plots

Quantile-Quantile plots are a graphical tool used in statistics to assess whether a dataset
follows a particular theoretical distribution, typically the normal distribution. They
provide a visual comparison between the observed quantiles1 of the data and the quantiles
expected from the chosen theoretical distribution.

A neutral explanation of how QQ plots work:

4.10.1.1 Sample data

In Table 4.2 𝑛 = 10 datapoints are shown as a sample dataset.

Table 4.2: 10 randomly sampled datapoints for the creation of the QQ-plot
x smpl_no

-0.56047565 1
-0.23017749 2
1.55870831 3
0.07050839 4

1A quantile is a statistical concept used to divide a dataset into equal-sized subsets or intervals.
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0.12928774 5
1.71506499 6
0.46091621 7

-1.26506123 8
-0.68685285 9
-0.44566197 10

4.10.1.2 Data Sorting

To create a QQ plot, the data must be sorted in ascending order.

Table 4.3: The sorted data points.
x smpl_no

-1.26506123 8
-0.68685285 9
-0.56047565 1
-0.44566197 10
-0.23017749 2
0.07050839 4
0.12928774 5
0.46091621 7
1.55870831 3
1.71506499 6

4.10.1.3 Theoretical Quantiles

Theoretical quantiles are calculated based on the chosen distribution (e.g., the normal
distribution). These quantiles represent the expected values if the data perfectly follows
that distribution.

Table 4.4: The calculated theoretical quantiles
x smpl_no x_norm x_thrtcl

-1.26506123 8 -1.404601888 0.08006985
-0.68685285 9 -0.798376211 0.21232610
-0.56047565 1 -0.665875352 0.25274539
-0.44566197 10 -0.545498338 0.29270541
-0.23017749 2 -0.319572479 0.37464622
0.07050839 4 -0.004316756 0.49827787
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0.12928774 5 0.057310762 0.52285118
0.46091621 7 0.405008410 0.65726434
1.55870831 3 1.555994430 0.94014529
1.71506499 6 1.719927421 0.95727718

4.10.1.4 Plotting Points
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Figure 4.9: The QQ points as calculated before.

For each data point, a point is plotted in the QQ plot. The x-coordinate of the point
corresponds to the theoretical quantile, and the y-coordinate corresponds to the observed
quantile from the data, see Figure 4.9.
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4.10.1.5 Perfect Normal Distribution
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Figure 4.10: A perfect normal distribution would be indicated if all points would fall on
this straight line.

In the case of a perfect normal distribution, all the points would fall along a straight
line at a 45-degree angle. If the data deviates from normality, the points may deviate
from this line in specific ways, see Figure 4.10.
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4.10.1.6 Interpretation
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A perfect QQ line in comparison to the data QQ line.

Figure 4.11: The QQ line as plotted using the theoretical and sample quantiles.

Deviations from the straight line suggest departures from the assumed distribution. For
example, if points curve upward, it indicates that the data has heavier tails than a
normal distribution. If points curve downward, it suggests lighter tails. S-shaped curves
or other patterns can reveal additional information about the data’s distribution. In
Figure 4.11 the QQ-points are shown together with the respective QQ-line and a line
of perfectly normal distributed points. Some deviations can be seen, but it is hard to
judge, if the data is normally distributed or not.
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4.10.1.7 Confidence Interval
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Figure 4.12: The QQ plot with confidence bands.

Because it is hard to judge from Figure 4.11 if the points are normally distributed, it
makes sense to get limits for normally disitrbuted points. This is shown in Figure 4.12.
The gray area depicts the (95%) confidence bands for a normal distribution. All the
points fall into the area, as well as the line. This shows, that the points are likely to be
normally distributed.
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4.10.1.8 The drive shaft exercise
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QQ−Plots of the drive shaft data with confidence bands.

Figure 4.13: The QQ plots for each drive shaft group shown in subplots.

The QQ plot method is extended to the drive shaft exercise in Figure 4.13. In each
subplot the plot for the respective group is shown together with the QQ-points, the
QQ-line and the respective confidence bands. The scaling for each plot is different to
enhance visibility of every subplot. A line for the perfect normal distribution is also
shown in solid linestyle. From group 1 … 4 all points fall into the QQ confidence bands.
Group05 differs however. The points from visible categories, which is a strong indicator,
that the measurement system may be to inaccurate.

97



4 Inferential Statistics

4.10.2 Quantitative Methods
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Figure 4.14: A visualisation of the KS test using the 10 datapoints from before

The Kolmogorov-Smirnov test for normality, often referred to as the KS test, is a sta-
tistical test used to assess whether a dataset follows a normal distribution. It evaluates
how closely the cumulative distribution function of the dataset matches the expected
CDF of a normal distribution.

1. Null Hypothesis (H0): The null hypothesis in the KS test states that the sample
data follows a normal distribution.

2. Alternative Hypothesis (Ha): The alternative hypothesis suggests that the
sample data significantly deviates from a normal distribution.

3. Test Statistic (D): The KS test calculates a test statistic, denoted as D which
measures the maximum vertical difference between the empirical CDF of the data
and the theoretical CDF of a normal distribution. It quantifies how far the observed
data diverges from the expected normal distribution. A visualization of the KS-
test is shown in Figure 4.14. The red line denotes a perfect normal distribution,
whereas the step function shows the empirical CDF of the data itself.

4. Critical Value: To assess the significance of D, a critical value is determined
based on the sample size and the chosen significance level (𝛼). If D exceeds the
critical value, it indicates that the dataset deviates significantly from a normal
distribution.

5. Decision: If D is greater than the critical value, the null hypothesis is rejected, and
it is concluded that the data is not normally distributed. If D is less than or equal
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4.10 Distribution Tests

to the critical value, there is not enough evidence to reject the null hypothesis,
suggesting that the data may follow a normal distribution.

It is important to note that the KS test is sensitive to departures from normality in both
tails of the distribution. There are other normality tests, like the Shapiro-Wilk test and
Anderson-Darling test, which may be more suitable in certain situations. Researchers
typically choose the most appropriate test based on the characteristics of their data and
the assumptions they want to test.

4.10.3 Expanding to non-normal disitributions
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(a) the QQ-plot for the weibull distribution us-
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(b) a detrended QQ-plot

Figure 4.15: The QQ-plot can easily be extended to non-normal distributions.

The QQ-plot can easily be extended to non-normal disitributions as well. This is shown
in Figure 4.15. In Figure 4.15a a classic QQ-plot for Figure 2.25 is shown. The same rules
as before still apply, they are only extended to the weibull distribution. In Figure 4.15b
a detrended QQ-plot is shown in order to account for visual bias. It is of course known,
that the data follows a weibull disitribution with a shape parameter 𝛽 = 2 and a scale
parameter 𝜆 = 500, but such distributional parameters can also be estimated (Delignette-
Muller and Dutang 2015).
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4.11 Test 1 Variable

Figure 4.16: Statistical tests for one variable.

4.11.1 One Proportion Test

Table 4.5: The raw data for the proportion test.
Category Count Total plt_lbl
A 35 100 35 counts 100 trials
B 20 100 20 counts 100 trials

The one proportion test is used on categorical data with a binary outcome, such as suc-
cess or failure. Its prerequisite is having a known or hypothesized population proportion
that the sample proportion shall be compared to. This test helps determine if the sample
proportion significantly differs from the population proportion, making it valuable for
studies involving proportions and percentages.

Table 4.6: The test results for the proportion test.
estimate1 estimate2 statistic p.value parameter conf.low conf.high alternative

0.350 0.200 4.915 0.027 1.000 0.018 0.282 two.sided

4.11.2 Chi2 goodness of fit test

Table 4.7: The raw data for the gof 𝜒2 test.
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4.11 Test 1 Variable

group count_n_observed
group01 100.000
group02 100.000
group03 100.000
group04 100.000
group05 100.000

Table 4.8: The test results for the gof 𝜒2 test.

statistic p.value parameter
0.000 1.000 4.000

The 𝜒2 goodness of Fit Test (gof) is applied on categorical data with expected frequen-
cies. It is suitable for analyzing nominal or ordinal data. This test assesses whether
there is a significant difference between the observed and expected frequencies in your
dataset, making it useful for determining if the data fits an expected distribution.

4.11.3 One-sample t-test

The one-sample t-test is designed for continuous data when you have a known or hy-
pothesized population mean that you want to compare your sample mean to. It relies
on the assumption of normal distribution, making it applicable when assessing whether
a sample’s mean differs significantly from a specified population mean.

The test can be applied in various settings. One is, to test if measured data comes from
a population with a certain mean (for exampe a test against a specification). To show
the application, the drive shaft data is employed. In Table 4.9 the per group summarised
data of the dirve shaft data is shown.

Table 4.9: The raw data for the one sample t-test.
group mean_diameter sd_diameter
group01 12.015 0.111
group02 12.364 0.189
group03 13.002 0.102
group04 11.486 0.094
group05 12.001 0.026
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4 Inferential Statistics

One important prerequisite for the One sample t-test normally distributed data. For
this, graphical and numerical methods have been introduced in previous chapters. First,
a classic QQ-plot is created for every group (see Figure 4.17). From a first glance, the
data appears to be normally distributed.
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Figure 4.17: The qq-plot for the drive shaft data

A more quantitative approach to tests for normality is shown in Table 4.10. Here, each
group is tested with the KS-test for normality. H0 is accepted (the data is normal
distributed) because the computed p-value is larger than the significance level (𝛼 =
0.05).

Table 4.10: The results for the one KS normality test for each group.
group statistic p.value method alternative
group01 0.048 0.975 Asymptoticone-

sampleKolmogorov-
Smirnovtest

two-sided

group02 0.067 0.754 Asymptoticone-
sampleKolmogorov-
Smirnovtest

two-sided

group03 0.075 0.633 Asymptoticone-
sampleKolmogorov-
Smirnovtest

two-sided
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Table 4.10: The results for the one KS normality test for each group.
group statistic p.value method alternative
group04 0.060 0.862 Asymptoticone-

sampleKolmogorov-
Smirnovtest

two-sided

group05 0.127 0.081 Asymptoticone-
sampleKolmogorov-
Smirnovtest

two-sided

There is sufficient evidence to assume normal distributed data within each group. The
next step is, to test if the data comes from a certain population mean (𝜇0). In this case,
the population mean is the specification of the drive shaft at a diameter = 12𝑚𝑚.

Table 4.11: The results for the one sample t-test (against mean = 12mm).
group estimate statistic p.value parameterconf.low conf.high method alternative
group01 12.015 1.391 0.167 99.000 11.993 12.038 OneSamplet-

test
two.sided

group02 12.364 19.274 0.000 99.000 12.326 12.401 OneSamplet-
test

two.sided

group03 13.002 97.769 0.000 99.000 12.982 13.022 OneSamplet-
test

two.sided

group04 11.486 −54.441 0.000 99.000 11.468 11.505 OneSamplet-
test

two.sided

group05 12.001 0.418 0.677 99.000 11.996 12.006 OneSamplet-
test

two.sided

4.11.4 One sample Wilcoxon test

For situations where your data may not follow a normal distribution or when dealing
with ordinal data, the one-sample Wilcoxon test is a non-parametric alternative to the
t-test. It is used to evaluate whether a sample’s median significantly differs from a
specified population median.

The wear and tear of drive shafts can occur due to various factors related to the vehicle’s
operation and maintenance. Some common causes include:

1. Normal Usage: Over time, the drive shaft undergoes stress and strain during
regular driving. This can lead to gradual wear on components, especially if the
vehicle is frequently used.

2. Misalignment: Improper alignment of the drive shaft can result in uneven dis-
tribution of forces, causing accelerated wear. This misalignment may stem from
issues with the suspension system or other related components.
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3. Lack of Lubrication: Inadequate lubrication of the drive shaft joints and bear-
ings can lead to increased friction, accelerating wear. Regular maintenance, in-
cluding proper lubrication, is essential to mitigate this factor.

4. Contamination: Exposure to dirt, debris, and water can contribute to the degra-
dation of drive shaft components. Contaminants can infiltrate joints and bearings,
causing abrasive damage over time.

5. Vibration and Imbalance: Excessive vibration or imbalance in the drive shaft
can lead to increased stress on its components. This may result from issues with
the balance of the rotating parts or damage to the shaft itself.

6. Extreme Operating Conditions: Harsh driving conditions, such as off-road
terrain or constant heavy loads, can accelerate wear on the drive shaft. The com-
ponents may be subjected to higher levels of stress than they were designed for,
leading to premature wear and tear.

The wear and tear because o the reasons above can be rated on a scale with discrete
values from 1 … 5 with 2 being the reference value. It is therefore interesting, if the wear
and tear rating of 𝑛 = 100 drive shafts per group differs significantly from the reference
value 2. Because we are dealing with discrete data, the one sample t-test can not be
used.
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Figure 4.18: The wear and tear rating data histograms.
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4.12 Test 2 Variable (Qualitative or Quantitative)

Table 4.12: The results for the one sample Wilcoxon test for every group against the
reference value.

group statistic p.value alternative
group01 3,208.500 0.000 greater
group02 5,050.000 0.000 greater
group03 0.000 1.000 greater
group04 3,203.500 0.000 greater
group05 3,003.000 0.000 greater

Table 4.13: The results for the one sample t-test compared to the results of a one sample
Wilcoxon test.

group t_tidy_p.value wilcox_tidy_p.value
group01 0.167 0.182
group02 0.000 0.000
group03 0.000 0.000
group04 0.000 0.000
group05 0.677 0.803

4.12 Test 2 Variable (Qualitative or Quantitative)

Figure 4.19: Statistical tests for two variables.

4.12.1 Cochrane’s Q-test

Cochran’s Q test is employed when you have categorical data with three or more related
groups, often collected over time or with repeated measurements. It assesses if there is
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a significant difference in proportions between the related groups.

4.12.2 Chi2 test of independence

This test is appropriate when you have two categorical variables, and you want to de-
termine if there is an association between them. It is useful for assessing whether the
two variables are dependent or independent of each other.

In the context of the drive shaft production the example assumes a dataset with cate-
gorical variables like “Defects” (Yes/No) and “Operator” (Operator A/B).

4.12.2.1 Contingency tables

A contingency table, also known as a cross-tabulation or crosstab, is a statistical table
that displays the frequency distribution of variables. It organizes data into rows and
columns to show the frequency or relationship between two or more categorical variables.
Each cell in the table represents the count or frequency of occurrences that fall into a
specific combination of categories for the variables being analyzed. It is commonly used
in statistics to examine the association between categorical variables and to understand
patterns within data sets.

Table 4.14: The contingency table for this example.
Defects Operator A Operator B
No 2 3
Yes 3 2

4.12.2.2 test results

With 𝑝 ≈ 1 > 0.05 the 𝑝-value is greater than the significance level of 𝛼 = 0.05. The
𝐻0 is therefore proven, there is no difference between the operators. The test results are
depicted below-

Pearson's Chi-squared test with Yates' continuity correction

data: contingency_table
X-squared = 0, df = 1, p-value = 1
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Figure 4.20: Correlation between two variables and the quantification thereof.

4.12.3 Correlation

Correlation refers to a statistical measure that describes the relationship between two
variables. It indicates the extent to which changes in one variable are associated with
changes in another.

Correlation is measured on a scale from -1 to 1:

• A correlation of 1 implies a perfect positive relationship, where an increase in one
variable corresponds to a proportional increase in the other.

• A correlation of -1 implies a perfect negative relationship, where an increase in one
variable corresponds to a proportional decrease in the other.

• A correlation close to 0 suggests a weak or no relationship between the variables.

Correlation doesn’t imply causation; it only indicates that two variables change together
but doesn’t determine if one causes the change in the other.

4.12.3.1 Pearson Corrrelation

The pearson correlation coefficient is a normalized version of the covariance.

𝑅 = Cov(𝑋, 𝑌 )
𝜎𝑥𝜎𝑦

(4.5)

• Covariance is sensitive to scale (𝑚𝑚 vs. 𝑐𝑚)
• Pearson correlation removes units, allowing for meaningful comparisons across

datasets
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Figure 4.21: The QQ-plot of both variables. There is strong evidence that they are
normally distributed.

Pearson's product-moment correlation

data: drive_shaft_rpm_dia$rpm and drive_shaft_rpm_dia$diameter
t = 67.895, df = 498, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9406732 0.9578924
sample estimates:
cor
0.95

When you have two continuous variables and want to measure the strength and direc-
tion of their linear relationship, Pearson correlation is the go-to choice (Pearson 1895).
It assumes normally distributed data and is particularly valuable for exploring linear
associations between variables and is calculated via (4.6).

𝑅 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥) × (𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2 × ∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2
(4.6)

The Pearson Correlation Coeffcient works best with normal disitributed data. The
normal distribution of the data is verified in Figure 4.21.
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R = 0.95, p < 2.2e−16
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Figure 4.22: Correlation between rpm of lathe machine and the diameter of the drive
shaft.

4.12.3.2 Spearman Correlation

Spearman (Spearman 1904) correlation is a non-parametric alternative to Pearson cor-
relation. It is used when the data is not normally distributed or when the relationship
between variables is monotonic but not necessarily linear.

𝜌 = 1 − 6 ∑ 𝑑2
𝑖

𝑛(𝑛2 − 1) (4.7)

In Figure 4.23 the example data for a drive shaft production is shown. The Production_-
Time and the Defects seem to form a relationship, but the data does not appear to
be normally distributed. This can also be seen in the QQ-plots of both variables in
Figure 4.24.

The spearman correlation coefficient (𝜌) is based on the pearson correlation, but applied
to ranked data

4.12.3.3 Correlation - methodogical limits

While correlation analysis and summary statistics are certainly useful, one must always
consider the raw data. The data taken from Davies, Locke, and D’Agostino McGowan
(2022) showcases this. The summary statistics in Table 4.15 are practically the same,
one would not suspect different underlying data. When the raw data is plotted though
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Figure 4.23: The relationship between the production time and the number of defects.

(Figure 4.25), it can be seen that the data appears to be highly non linear, forming
different shapes as well as different categories etc.

Always check the raw data.

Table 4.15: The datasauRus data and the respective summary statistics.
dataset mean_x mean_y std_dev_x std_dev_y corr_x_y
away 54.266 47.835 16.770 26.940 −0.064
bullseye 54.269 47.831 16.769 26.936 −0.069
circle 54.267 47.838 16.760 26.930 −0.068
dino 54.263 47.832 16.765 26.935 −0.064
dots 54.260 47.840 16.768 26.930 −0.060
h_lines 54.261 47.830 16.766 26.940 −0.062
high_lines 54.269 47.835 16.767 26.940 −0.069
slant_down 54.268 47.836 16.767 26.936 −0.069
slant_up 54.266 47.831 16.769 26.939 −0.069
star 54.267 47.840 16.769 26.930 −0.063
v_lines 54.270 47.837 16.770 26.938 −0.069
wide_lines 54.267 47.832 16.770 26.938 −0.067
x_shape 54.260 47.840 16.770 26.930 −0.066

4.13 Test 2 Variables (2 Groups)

Figure 4.26: Statistical tests for two variable.

4.13.1 Test for equal variance (homoscedasticity)

Tests for equal variances, also known as tests for homoscedasticity, are used to deter-
mine if the variances of two or more groups or samples are equal. Equal variances are
an assumption in various statistical tests, such as the t-test and analysis of variance
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Figure 4.24: The QQ-plots of both variables.

(ANOVA). When the variances are not equal, it can affect the validity of these tests.
Two common tests for equal variances are:

Certainly, here are bullet points outlining the null hypothesis, prerequisites, and decisions
for each of the three tests:

4.13.1.1 F-Test (Hahs-Vaughn and Lomax 2013)

• Null Hypothesis: The variances of the different groups or samples are equal.
• Prerequisites:

– Independence
– Normality
– Number of groups = 2

• Decisions:

– 𝑝 > 𝛼 → fail to reject H0
– 𝑝 < 𝛼 → reject H0

F test to compare two variances
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Figure 4.25: The raw data from the datasauRus packages shows, that summary statistics
may be misleading.

data: ds_wide$group01 and ds_wide$group03
F = 1.1817, num df = 99, denom df = 99, p-value = 0.4076
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.7951211 1.7563357
sample estimates:
ratio of variances

1.181736

4.13.1.2 Bartlett Test (Bartlett 1937)

• Null Hypothesis: The variances of the different groups or samples are equal.
• Prerequisites:

– Independence
– Normality
– Number of groups > 2

• Decisions:

– 𝑝 > 𝛼 → fail to reject H0
– 𝑝 < 𝛼 → reject H0
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Figure 4.27: The variances (𝑠𝑑2) for the drive shaft data.

Bartlett test of homogeneity of variances

data: diameter by group
Bartlett's K-squared = 275.61, df = 4, p-value < 2.2e-16

4.13.1.3 Levene Test (Olkin June)

• Null Hypothesis: The variances of the different groups or samples are equal.
• Prerequisites:

– Independence
– Number of groups > 2

• Decisions:

– 𝑝 > 𝛼 → fail to reject H0
– 𝑝 < 𝛼 → reject H0

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 4 38.893 < 2.2e-16 ***
495

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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4.13.2 t-test for independent samples

The independent samples t-test is applied when you have continuous data from two
independent groups. It evaluates whether there is a significant difference in means
between these groups, assuming a normal distribution of the data.

• Null Hypothesis: The means of the two samples are equal.
• Prerequisites:

– Independence
– Normal Distribution
– Number of groups = 2
– equal Variances of the groups

First, the variances are compared in order to check if they are equal using the F-Test
(as described in Section 4.13.1.1).

F test to compare two variances

data: group01 %>% pull("diameter") and group03 %>% pull("diameter")
F = 1.1817, num df = 99, denom df = 99, p-value = 0.4076
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.7951211 1.7563357
sample estimates:
ratio of variances

1.181736

With 𝑝 > 𝛼 = 0.05 the 𝐻0 is accepted, the variances are equal.

The next step is to check the data for normality using the KS-test (as described in
Section 4.10.2).

Asymptotic one-sample Kolmogorov-Smirnov test

data: group01 %>% pull("diameter")
D = 0.048142, p-value = 0.9746
alternative hypothesis: two-sided

Asymptotic one-sample Kolmogorov-Smirnov test
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data: group03 %>% pull("diameter")
D = 0.074644, p-value = 0.6332
alternative hypothesis: two-sided

With 𝑝 > 𝛼 = 0.05 the 𝐻0 is accepted, the data seems to be normally distributed.
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Figure 4.28: The data within the two groups for comparing the sample means using the
t-test for independent samples.

The formal test is then carried out. With 𝑝 < 𝛼 = 0.05 𝐻0 is rejected, the data comes
from populations with different means.

Two Sample t-test

data: group01 %>% pull(diameter) and group03 %>% pull(diameter)
t = -65.167, df = 198, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.0164554 -0.9567446
sample estimates:
mean of x mean of y
12.0155 13.0021
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4.13.3 Welch t-test for independent samples

Similar to the independent samples t-test, the Welch t-test is used for continuous data
with two independent groups (WELCH 1947). However, it is employed when there are
unequal variances between the groups, relaxing the assumption of equal variances in the
standard t-test.

• Null Hypothesis: The means of the two samples are equal.
• Prerequisites:

– Independence
– Normal Distribution
– Number of groups = 2

First, the variances are compared in order to check if they are equal using the F-Test
(as described in Section 4.13.1.1).

F test to compare two variances

data: group01 %>% pull("diameter") and group02 %>% pull("diameter")
F = 0.34904, num df = 99, denom df = 99, p-value = 3.223e-07
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2348504 0.5187589
sample estimates:
ratio of variances

0.3490426

With 𝑝 < 𝛼 = 0.05 𝐻0 is rejected and 𝐻𝑎 is accepted. The variances are different.

Using the KS-test (see Section 4.10.2) the data is checked for normality.

Asymptotic one-sample Kolmogorov-Smirnov test

data: group01 %>% pull("diameter")
D = 0.048142, p-value = 0.9746
alternative hypothesis: two-sided

Asymptotic one-sample Kolmogorov-Smirnov test
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data: group02 %>% pull("diameter")
D = 0.067403, p-value = 0.7539
alternative hypothesis: two-sided

With 𝑝 > 𝛼 = 0.05 𝐻0 is accepted, the data seems to be normally distributed.
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Figure 4.29: The data within the two groups for comparing the sample means using the
Welch-test for independent samples.

Then, the formal test is carried out.

Welch Two Sample t-test

data: group01 %>% pull(diameter) and group02 %>% pull(diameter)
t = -15.887, df = 160.61, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3912592 -0.3047408
sample estimates:
mean of x mean of y
12.0155 12.3635
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With 𝑝 < 𝛼 = 0.05 we reject 𝐻0, the data seems to be coming from different population
means, even though the variances are overlapping (and different).

4.13.4 Mann-Whitney U test

For non-normally distributed data or small sample sizes, the Mann-Whitney U test
serves as a non-parametric alternative to the independent samples t-test (Mann and
Whitney 1947). It assesses whether there is a significant difference in medians between
two independent groups.

• Null Hypothesis: The medians of the two samples are equal.
• Prerequisites:

– Independence
– no specific distribution (non-parametric)
– Number of groups = 2

group01

group02

11.811.912.012.112.212.312.412.512.612.712.812.913.013.113.213.3
diameter

Ridgeline plots of two groups of drive shaft diameters

Figure 4.30: The data within the two groups for comparing the sample medians using
the Mann-Whitney-U Test.

This time a graphical method to check for normality is employed (QQ-plot, see Sec-
tion 4.10.1). From the Figure 4.31 it is pretty clear, that the data is not normally
distributed. Furthermore, the variances seem to be unequal as well.
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Figure 4.31: The data within the two groups for comparing the sample medians using
the Mann-Whitney-U Test.

Then, the formal test is carried out. With 𝑝 < 𝛼 = 0.05 𝐻0 is rejected, the true location
shift is not equal to 0.

Wilcoxon rank sum test with continuity correction

data: diameter by group
W = 7396, p-value = 4.642e-09
alternative hypothesis: true location shift is not equal to 0

4.13.5 t-test for paired samples

The paired samples t-test is suitable when you have continuous data from two related
groups or repeated measures. It helps determine if there is a significant difference in
means between the related groups, assuming normally distributed data.

• Null Hypothesis: True mean difference is not equal to 0.
• Prerequisites:

– Paired Data
– Normal Distribution
– equal variances
– Number of groups = 2

Using the F-Test, the variances are compared.
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F test to compare two variances

data: diameter by timepoint
F = 1, num df = 9, denom df = 9, p-value = 1
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2483859 4.0259942
sample estimates:
ratio of variances

1

With 𝑝 > 𝛼 = 0.05 𝐻0 is accepted, the variances are equal.

Using a QQ-plot the data is checked for normality.
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QQ−plots of the treament data at the different timepoints

Without a formal test, the data is assumed to be normally distributed.
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Figure 4.32: A boxplot of the data, showing the connections between the datapoints.

The formal test is then carried out.

# A tibble: 1 x 8
.y. group1 group2 n1 n2 statistic df p

* <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl>
1 diameter t0 t1 10 10 -13.4 9 0.000000296

With 𝑝 < 𝛼 = 0.05 𝐻0 is rejected, the treatment changed the properties of the product.

4.13.6 Wilcoxon signed rank test

For non-normally distributed data or situations involving paired samples, the Wilcoxon
signed rank test is a non-parametric alternative to the paired samples t-test. It evaluates
whether there is a significant difference in medians between the related groups.

• Null Hypothesis: True mean difference is not equal to 0.
• Prerequisites:

– Paired Data
– Number of groups = 2
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# A tibble: 1 x 7
.y. group1 group2 n1 n2 statistic p

* <chr> <chr> <chr> <int> <int> <dbl> <dbl>
1 diameter t0 t1 20 20 25 0.00169
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4.14 Test 2 Variables (> 2 Groups)

4.14 Test 2 Variables (> 2 Groups)

Figure 4.33: Statistical tests for one variable.

4.14.1 Analysis of Variance (ANOVA) - Basic Idea

ANOVA’s ability to compare multiple groups or factors makes it widely applicable across
diverse fields for analyzing variance and understanding relationships within data. In the
context of engineering sciences the application of ANOVA include:

1. Experimental Design and Analysis: Engineers often conduct experiments to
optimize processes, test materials, or evaluate designs. ANOVA aids in analyzing
these experiments by assessing the effects of various factors (like temperature,
pressure, or material composition) on the performance of systems or products.
It helps identify significant factors and their interactions to improve engineering
processes.

2. Product Testing and Reliability: Engineers use ANOVA to compare the per-
formance of products manufactured under different conditions or using different
materials. This analysis helps ensure product reliability by identifying which fac-
tors significantly impact product quality, durability, or functionality.

3. Process Control and Improvement: ANOVA plays a crucial role in quality
control and process improvement within engineering. It helps identify variations in
manufacturing processes, such as assessing the impact of machine settings or pro-
duction methods on product quality. By understanding these variations, engineers
can make informed decisions to optimize processes and minimize defects.

4. Supply Chain and Logistics: In engineering logistics and supply chain manage-
ment, ANOVA aids in analyzing the performance of different suppliers or trans-
portation methods. It helps assess variations in delivery times, costs, or product
quality across various suppliers or logistical approaches.

5. Simulation and Modeling: In computational engineering, ANOVA is used to
analyze the outputs of simulations or models. It helps understand the significance
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of different input variables on the output, enabling engineers to refine models and
simulations for more accurate predictions.

Figure 4.34: The basic idea of an ANOVA.

Across such fields ANOVA is often used to:

Comparing Means: ANOVA is employed when comparing means between three or
more groups. It assesses whether there are statistically significant differences among the
means of these groups. For instance, in an experiment testing the effect of different
fertilizers on plant growth, ANOVA can determine if there’s a significant difference in
growth rates among the groups treated with various fertilizers.

Modeling Dependencies: ANOVA can be extended to model dependencies among
variables in more complex designs. For instance, in factorial ANOVA, it’s used to study
the interaction effects among multiple independent variables on a dependent variable.
This allows researchers to understand how different factors might interact to influence
an outcome.

Measurement System Analysis (MSA): ANOVA is integral in MSA to evaluate the
variation contributed by different components of a measurement system. In assessing the
reliability and consistency of measurement instruments or processes, ANOVA helps in
dissecting the total variance into components attributed to equipment variation, operator
variability, and measurement error.
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4.14 Test 2 Variables (> 2 Groups)

As with statistical tests before, the applicability of the ANOVA depends on various
factors.

4.14.1.1 Sum of squared error (SSE)

The sum of squared errors is a statistical measure used to assess the goodness of fit of
a model to its data. It is calculated by squaring the differences between the observed
values and the values predicted by the model for each data point, then summing up these
squared differences. The SSE indicates the total variability or dispersion of the observed
data points around the fitted regression line or model. Lower SSE values generally
indicate a better fit of the model to the data.

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (4.8)

Figure 4.35: A graphical depiction of the SSE.

4.14.1.2 Mean squared error (MSE)

The mean squared error is a measure used to assess the average squared difference
between the predicted and actual values in a dataset. It is frequently employed in
regression analysis to evaluate the accuracy of a predictive model. The MSE is calculated
by taking the average of the squared differences between predicted values and observed
values. A lower MSE indicates that the model’s predictions are closer to the actual
values, reflecting better accuracy.
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𝑀𝑆𝐸 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (4.9)

4.14.2 One-way ANOVA

The one-way analysis of variance (ANOVA) is used for continuous data with three or
more independent groups. It assesses whether there are significant differences in means
among these groups, assuming a normal distribution.

• Null Hypothesis: True mean difference is equal to 0.
• Prerequisites:

– equal variances
– Number of groups > 2
– One response, one predictor variable

Figure 4.36: The basic idea of a One-way ANOVA.

The most important prerequisite for a One-way ANOVA are equal variances. Because
there are more than two groups, the Bartlett test (as introduced in Section 4.13.1.2) is
chosen (data is normally distributed).

Bartlett test of homogeneity of variances
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4.14 Test 2 Variables (> 2 Groups)

data: diameter by group
Bartlett's K-squared = 275.61, df = 4, p-value < 2.2e-16

Because 𝑝 < 𝛼 = 0.05 the variances are different.
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Figure 4.37: The groups with equal variance are highlighted.

Bartlett test of homogeneity of variances

data: diameter by group
Bartlett's K-squared = 2.7239, df = 2, p-value = 0.2562

With 𝑝 > 𝛼 = 0.05 𝐻0 is accepted, the variances of group01, group02 and group03 are
equal.

Of course, many software package provide an automated way of performing a One-way
ANOVA, but the first will be explained in detail. The general model for a One-way
ANOVA is shown in (4.10).

𝑌 ∼ 𝑋 + 𝜖 (4.10)

• 𝐻0: All population means are equal.
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• 𝐻𝑎: Not all population means are equal.

For a One-way ANOVA the predictor variable 𝑋 is the mean ( ̄𝑥) of all datapoints 𝑥𝑖.

First the SSE and the MSE is calculated for the complete model (𝐻𝑎 is true), see
Table 4.16. The complete model means, that every mean, for every group is calculated
and the 𝑆𝑆𝐸 according to (4.8) is calculated.
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Figure 4.38: Computation of error for the complete model (mean per group as model)

Table 4.16: The SSE and MSE for the complete model.
sse df n p mse

3.150 297.000 300.000 3.000 0.011

Then, the SSE and the MSE is calculated for the reduced model (𝐻0 is true). In the
reduced model, the mean is not calculated per group, the overall mean is calculated
(results in Table 4.17).

Table 4.17: The SSE and MSE from the reduced model.
sse df n p mse

121.506 299.000 300.000 1.000 0.406

The 𝑆𝑆𝐸, 𝑑𝑓 and 𝑀𝑆𝐸 explained by the complete model are calculated:
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Figure 4.39: Computation of error for the reduced model (overall mean as model)

𝑆𝑆𝐸𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 𝑆𝑆𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − 𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 118.36 (4.11)
𝑑𝑓𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 𝑑𝑓𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − 𝑑𝑓𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 2 (4.12)

𝑀𝑆𝐸𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 𝑆𝑆𝐸𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑
𝑑𝑓𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑

= 59.18 (4.13)

The ratio of the variance (MSE) as explained by the complete model to the reduced
model is then calculated. The probability of this statistic is afterwards calculated (if 𝐻0
is true).

[1] 2.762026e-236

The probability of a F-statistic with 𝑝𝑓 = 5579.207 is 0.

A crosscheck with a automated solution (aov-function) yields the results shown in Ta-
ble 4.18.

Table 4.18: The ANOVA results from the aov function.
term df sumsq meansq statistic p.value
group 2.000 118.356 59.178 5,579.207 0.000
Residuals 297.000 3.150 0.011 NA NA
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Some sanity checks are of course required to ensure the validity of the results. First, the
variance of the residuals must be equal along the groups (see Figure 4.40).
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Figure 4.40: The variances of the residuals.

Also, the residuals from the model must be normally distributed (see Figure 4.41).
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Figure 4.41: The distribution of the residuals.

The model seems to be valid (equal variances of residuals, normal distributed residu-
als).

130



4.14 Test 2 Variables (> 2 Groups)

With 𝑝 < 𝛼 = 0.05 𝐻0 can be rejected, the means come from different populations.

4.14.3 Welch ANOVA

Welch ANOVA: Similar to one-way ANOVA, the Welch ANOVA is employed when
there are unequal variances between the groups being compared. It relaxes the assump-
tion of equal variances, making it suitable for situations where variance heterogeneity
exists.

• Null Hypothesis: True mean difference is not equal to 0.
• Prerequisites:

– Number of groups > 2
– One response, one predictor variable

The Welch ANOVA drops the prerequisite of equal variances in groups. Because there
are more than two groups, the Bartlett test (as introduced in Section 4.13.1.2) is chosen
(data is normally distributed).

Bartlett test of homogeneity of variances

data: diameter by group
Bartlett's K-squared = 275.61, df = 4, p-value < 2.2e-16

With 𝑝 < 𝛼 = 0.05 𝐻0 can be rejected, the variances are not equal.

The ANOVA table for the Welch ANOVA is shown in Table 4.19.

Table 4.19: The ANOVA results from the ANOVA Welch Test (not assuming equal vari-
ances).

num.df den.df statistic p.value method
4.000 215.085 3,158.109 0.000 One-way

analysis
ofmeans (not
assuming
equalvariances)
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4.14.4 Kruskal Wallis

Kruskal-Wallis Test: When dealing with non-normally distributed data, the Kruskal-
Wallis test is a non-parametric alternative to one-way ANOVA. It is used to evaluate
whether there are significant differences in medians among three or more independent
groups.

In this example the drive strength is measured using three-point bending. Three different
methods are employed to increase the strength of the drive shaft.

Figure 4.42: The mechanical Background for a three-point bending test

• Method A: baseline material
• Method B: different geometry
• Method C: different material

In Figure 4.43 the raw drive shaft strength data for Method A, B and C is shown. At
first glance, the data does not appear to be normally distributed.
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Figure 4.43: The raw data from the drive shaft strength testing.

In Figure 4.44 the visual test for normal distribution is performed. The data does not
appear to be normally distributed.
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Figure 4.44: The qq-plot for the drive shaft strength testing data.

The Kruskal-Wallis test is then carried out. With 𝑝 < 𝛼 = 0.05 it is shown, that the
groups come from populations with different means. The next step is to find which of
the groups are different using a post-hoc analysis.
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Kruskal-Wallis rank sum test

data: strength by group
Kruskal-Wallis chi-squared = 107.65, df = 2, p-value < 2.2e-16

The Kruskal-Wallis Test (as the ANOVA) can only tell you, if there is a signifcant
difference between the groups, not what groups are different. Post-hoc tests are able to
determine such, but must be used with a correction for multiple testing (see (Tamhane
1977))

Pairwise comparisons using Wilcoxon rank sum test with continuity correction

data: kw_shaft_data$strength and kw_shaft_data$group

Method_A Method_B
Method_B < 2e-16 -
Method_C 6.8e-14 2.0e-10

P value adjustment method: bonferroni

Because 𝑝 < 𝛼 = 0.05 it can be concluded, that all means are different from each other.

4.14.5 repeated measures ANOVA

Repeated Measures ANOVA: The repeated measures ANOVA is applicable when
you have continuous data with multiple measurements within the same subjects or units
over time. It is used to assess whether there are significant differences in means over the
repeated measurements, under the assumptions of sphericity and normal distribution.

In this example, the diameter of 𝑛 = 20 drive shafts is measured after three different
steps.

• Before Machining
• After Machining
• After Inspection
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Figure 4.45: The raw data for the repeated measures ANOVA.

First, outliers are identified. There is no strict rule to identify outliers, in this case a
classical measure is applied according to (4.14)

outlier = {𝑥𝑖 > 𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅
𝑥𝑖 < 𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅 (4.14)

# A tibble: 1 x 5
timepoint Subject_ID diameter is.outlier is.extreme
<chr> <fct> <dbl> <lgl> <lgl>

1 After_Inspection 15 12.9 TRUE FALSE

A check for normality is done employing the Shapiro-Wilk test (Shapiro and Wilk
1965).

timepoint variable statistic p
After_Inspection diameter 0.968 0.727
After_Machining diameter 0.954 0.456
Before_Machining diameter 0.968 0.741

The next step is to check the dataset for sphericity, meaning to compare the variance
of the groups among each other in order to determine the equality thereof. For this the
Mauchly Test for sphericity is employed (Mauchly 1940).
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Effect W p p<.05
1 timepoint 0.927 0.524

With 𝑝 > 𝛼 = 0.05 𝐻0 is accepted, the variances are equal. Otherwise sphericity
corrections must be applied (Greenhouse and Geisser 1959).

The next step is to perform the repeated measures ANOVA, which yields the following
results.

Effect DFn DFd F p p<.05 ges
timepoint 2.000 36.000 18.081 0.000 * 0.444

With 𝑝 < 𝛼 = 0.05 𝐻0 is rejected, the different timepoints yield different diameters.
Which groups are different is then determined using a post-hoc test, including a correc-
tion for the significance level (Bonferroni 1936).

In this case, the assumptions for a t-test are met, the pairwise t-test can be used.

group1 group2 n1 n2 statistic df p p.adj signif
After_Inspection After_Machining 19 19 0.342 18 0.736 1.000 ns
After_Inspection Before_Machining 19 19 −4.803 18 0.000 0.000 ***
After_Machining Before_Machining 19 19 −6.283 18 0.000 0.000 ****

with 𝑝 < 𝛼 = 0.05 𝐻0 is rejected for the comparison Before_Machining - After_-
Machining and After_Inspection - Before_Machining. It can therefore be con-
cluded that the machining has a significant influence on the diameter, whereas the
inspection has none.

4.14.6 Friedman test

The Friedman test is a non-parametric alternative to repeated measures ANOVA (Fried-
man 1937). It is utilized when dealing with non-normally distributed data and multiple
measurements within the same subjects. This test helps determine if there are significant
differences in medians over the repeated measurements.

The same data as for the repeated measures ANOVA will be used.

.y. n statistic df p method
diameter 20.000 16.900 2.000 0.000 Friedman test

With 𝑝 < 𝛼 = 0.05 𝐻0 is rejected, the timepoints play a vital role for the drive shaft
parameter.
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5 Regression Analysis

Regression analysis is a statistical method used to examine the relationship between one
dependent variable and one or more independent variables. It aims to understand how
the dependent variable changes when one or more independent variables change.

The core idea is to create a mathematical model that represents this relationship. The
model is typically in the form of an equation that predicts the value of the dependent
variable based on the values of the independent variables.

There are different types of regression analysis, such as linear regression (when the
relationship between variables is linear) and nonlinear regression (when the relationship
is not linear). The process involves finding the best-fitting line or curve that minimizes
the differences between the predicted values from the model and the actual observed
values.

5.1 Linear Regression

𝑦 = 𝛽0 + 𝛽1 ⋅ 𝑋 (5.1)

Figure 5.1: The basic idea behind linear regression.
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The basic idea behind linear regression is, to find the line of the form 𝑌 = 𝛽0 + 𝛽1 ⋅ 𝑋
that best fits the datapoints. In order to determine the best fit, a criterion to optimize
for is needed. This is where residuals come into play.

5.1.1 Residuals

Figure 5.2: The calculation of residuals.

The computation of the residuals is based on (5.2) to the residual sum of squares.

𝑅𝑆𝑆 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − (𝛽1𝑥𝑖 + 𝛽0))2 (5.2)

5.1.2 Gradient Descent (Ruder 2016)

In linear regression, gradient descent is an iterative optimization process used to minimize
the difference between predicted and actual values. It starts with initial coefficients and
calculates the gradient of the cost function, representing the error. The coefficients are
then updated in the opposite direction of the gradient, with the magnitude of the update
controlled by a learning rate. This process is repeated until convergence, gradually
refining the coefficients to improve the accuracy of the linear regression model.
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Figure 5.3: An example for the gradient descent algorithm

5.1.3 Model Evaluation and Interpretation
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Figure 5.4: The linear regression between rounds per minute (rpm) of the lathing ma-
chine and the diameter of the drive shaft.

The coefficient of determination (𝑟2), is a statistical measure that assesses the proportion
of the variance in the dependent variable that is explained by the independent variable(s)
in a regression model. It ranges from 0 to 1, where 0 indicates that the model does not
explain any variability, and 1 indicates that the model explains all the variability. In
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other words, 𝑟2 provides insight into the goodness of fit of a regression model, indicating
how well the model’s predictions match the observed data.

𝑟2 = 1 − 𝑅𝑆𝑆
𝑆𝑆𝐸 (5.3)

The adjusted coefficient of determination, is a modification of the regular 𝑟2 in regression
analysis. While 𝑟2 assesses the proportion of variance explained by the independent
variables, the 𝑟2

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 takes into account the number of predictors (𝑘) in the model,
addressing potential issues with overfitting according to (5.4).

The 𝑟2
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 incorporates a penalty for adding unnecessary predictors that do not signif-

icantly contribute to explaining the variance in the dependent variable. This adjustment
helps prevent an inflated 𝑟2 when including more predictors, even if they don’t improve
the model significantly.
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Figure 5.5: The influence of k (number of predictors) on 𝑟2 and 𝑟2
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑.

𝑟2
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 − (1 − 𝑟2) 𝑛 − 1

𝑛 − 𝑘 − 1 (5.4)

Call:
lm(formula = diameter ~ rpm, data = drive_shaft_rpm_dia)

Residuals:
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5.1 Linear Regression

Min 1Q Median 3Q Max
-0.89501 -0.19690 -0.01096 0.21917 1.00742

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.5000000 0.1406190 17.78 <2e-16 ***
rpm 0.0095000 0.0001399 67.89 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3126 on 498 degrees of freedom
Multiple R-squared: 0.9025, Adjusted R-squared: 0.9023
F-statistic: 4610 on 1 and 498 DF, p-value: < 2.2e-16

In linear regression modeling, the absence of a visible pattern in the residuals is desirable
because it indicates that the model adequately captures the underlying relationship
between the independent and dependent variables. Residuals are the differences between
the observed and predicted values, and their randomness or lack of discernible pattern
suggests that the model is effectively explaining the variance in the data. A visible
pattern in residuals could indicate that the model fails to account for certain patterns or
trends, suggesting potential shortcomings or misspecifications in the regression model.
Detecting and addressing such patterns in residuals is crucial for ensuring the validity
and reliability of the linear regression analysis.
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Figure 5.6: There should not be a visible pattern in the residuals.
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Figure 5.7: The resiuals should be normally distributed.

In linear regression, the assumption of normally distributed residuals is essential for
accurate statistical inference, parameter estimation using ordinary least squares, and
constructing reliable confidence intervals. Normal residuals indicate that the model
appropriately captures data variability and helps identify issues like heteroscedasticity.
While departures from normality may not always invalidate results, adherence to this
assumption enhances the model’s robustness and reliability. If consistently violated,
alternative modeling approaches or transformations may be considered.

5.1.4 Hypostesis testing in linear regression

Null Hypothesis (H0): 𝛽1 = 0
Alternative Hypothesis (Ha): 𝛽1 ≠ 0

Table 5.1: The significance of model parameters.
term estimate std.error statistic p.value
(Intercept) 2.500 0.141 17.779 0.000
rpm 0.010 0.000 67.895 0.000

In linear regression, t testing of coefficients assesses whether individual regression co-
efficients significantly differ from zero, providing insights into the significance of each
predictor’s contribution to the model.
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5.2 Multiple linear regression

Table 5.2: The significance of the model.
r.squared adj.r.squared statistic p.value df df.residual nobs

0.902 0.902 4,609.692 0.000 1.000 498.000 500.000

In linear regression, the F-test assesses the overall significance of the regression model
by comparing the fit of the model with predictors to a model without predictors, helping
determine if the regression equation explains a significant proportion of the variance in
the dependent variable.

5.2 Multiple linear regression

Table 5.3: The data in a tabular overview including test for normal distribution.
Characteristic Overall
N = 5001 A
N = 1651 B
N = 1811 C
N = 1541 p-value
rpm 999 (932, 1,068) 993 (923, 1,061) 995 (927, 1,074) 1,012 (946, 1,068)
diameter 11.95 (11.30, 12.66) 11.90 (11.24, 12.51) 11.98 (11.30, 12.67) 12.01 (11.41, 12.77)
feed 40.01 (39.34, 40.67) 39.98 (39.34, 40.63) 39.91 (39.34, 40.65) 40.05 (39.37, 40.78)

1Median (Q1, Q3)

A short exploratory data analysis of the data for the multiple linear regression is given
in Table 5.3.
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5 Regression Analysis

diameter feed rpm
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QQ−plot for the continous variables

Figure 5.8: The graphical test for normal distribution (QQ-plot)

Figure 5.8 shows the graphical test for normal distribution for the multiple linear regres-
sion.
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Figure 5.9: The distribution of the output and input parameters.

In Figure 5.9 the distribution of the input data is shown in a histogram.

𝑌 ∼ 𝑟𝑝𝑚 + 𝑓𝑒𝑒𝑑 + 𝑠𝑖𝑡𝑒 (5.5)
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5.2 Multiple linear regression

Table 5.4: The output of the multiple linear regression modelling
Characteristic Beta 95% CI1 p-value
rpm 0.00 0.00, 0.01 <0.001
feed 0.44 0.29, 0.58 <0.001
site
    A 0.00 —
    B 0.09 -0.02, 0.20 0.11
    C 0.08 -0.03, 0.20 0.15

1CI = Confidence Interval

(5.5) shows the general model for the multiple linear regression model. In this example,
also the production site (site A, site B and site C) is included to test, if different
production sites lead to differently produced drive shafts. The results of the multiple
regression are shown in Table 5.4. Whilst the continuous variables appear to be signif-
icant (𝑝 < 𝛼 = 0.05), the production site does not play a significant rolefor the drive
shaft diameter.
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Figure 5.10: The model of the mulitple linear regression

In Figure 5.10 the model is shown to ease the interpretation. With increasing rpm or
feed also the drive shaft diameter increases.
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Figure 5.11: The check for pattern in the residuals
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Figure 5.12: The check for normal distribution in the residuals.

In Figure 5.12 the normal distribution of the residuals is confirmed, the model appears
to be valid.
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5.3 Logistic Regression

5.3 Logistic Regression

Figure 5.13: The basic idea of logisitic regression.

Logistic regression is a statistical method designed for binary classification problems
(Figure 5.13). It models the probability that an observation belongs to a particular class
using the sigmoid (logistic) function (5.6). The key steps include:

1. Probability Modeling:

• Model predicts the probability of an instance belonging to a specific class.

2. Linear Combination:

• Combines linearly weighted input features, representing the log-odds of the
positive class.

3. Sigmoid Function:

• Transforms the linear combination to ensure output is between 0 and 1.

4. Decision Boundary:

• Threshold probability (usually 0.5) determines class assignment.

5. Maximum Likelihood Estimation:

• Parameters are estimated using maximum likelihood to maximize the likeli-
hood of observed outcomes.

6. Odds Ratio:
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5 Regression Analysis

• Quantifies the impact of each predictor on the odds of the positive class.

Logistic regression is widely used for binary classification tasks in different domains,
providing an interpretable way to model the relationship between predictors and a binary
outcome.

𝑝 = 1
1 + 𝑒−(𝛽0+𝛽1𝑥) (5.6)

The ordinary linear regression equation is shown in (5.1).

If for 𝑦 the probabilities 𝑃 are used they may be > 1 or < 0 which is not possible for
𝑃 .

To overcome this issue, the odds of 𝑃 = 𝑃
1−𝑃 are taken.

𝑃
1 − 𝑃 = 𝛽0 + 𝛽1𝑥 (5.7)

𝑃
1 − 𝑃 ∈ 0 … + ∞

Restricted variables are not easy to model why (5.7) is expanded to (5.8).

log( 𝑃
1 − 𝑃 ) = 𝛽0 + 𝛽1𝑥 (5.8)

Which then in turn gives (5.6).
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5.3 Logistic Regression

5.3.1 𝛽0 = 1 and 𝛽1 = 1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

−5.0 −2.5 0.0 2.5 5.0
x

ŷ
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Figure 5.14: The influence of different paramters for the sigmoid function

In order to better understand the influencing factors a small parametric study on 𝛽0 and
𝛽1 is given. Figure 5.14 the sigmoid function 𝑝 = 1

1+𝑒−(𝛽0+𝛽1𝑥) with 𝛽0 = 1 and 𝛽1 = 1
is shown as a reference. Please note that the linear regression (𝛽0 + 𝛽1𝑥) expands the
usual sigmoid function which is given by

𝑓(𝑥) = 1
1 + 𝑒−𝑥

to model it in the intercept and gradient kind of logic.
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5 Regression Analysis

5.3.2 𝛽0 = 1 and 𝛽1 = 0 … 5
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Figure 5.15: The influence of different paramters for the sigmoid function

In the first case of the parametric study the gradient parameter is studied by varying it
between 0 … 5 with 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 1. From Figure 5.15 it can be seen, that the linear regres-
sion gradient parameters varies the characteristic S-like shape of the sigmoid function.
The higher 𝛽1 is, the more pronounced the S-shape becomes. The reference shape for
𝛽0 = 1 and 𝛽1 = 1 is shown in light gray in the figure. An interesting effect is visible
for a gradient of 𝛽1 = 0: The function becomes a constant which only depends on the
intercept (in this case 𝛽0 = 1).
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5.3 Logistic Regression

5.3.3 𝛽0 = 1 and 𝛽1 = −5 … 0
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Figure 5.16: The influence of different paramters for the sigmoid function

When the parameter study is expanded to negative values of 𝛽1 (𝛽1 = −5 … 0) the curve
is mirrored and reverses its direction (see Figure 5.16), which is also highlighted by the
reference shape for 𝛽0 = 1 and 𝛽1 = 1 in light gray. The general interpretation for the
influence of this parameter is reversed by stays the same: the larger the deviation from
0 is for 𝛽1, the more pronounced the S-like shape becomes.
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5.3.4 𝛽0 = 0 … 5 and 𝛽1 = 1
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Figure 5.17: The influence of different paramters for the sigmoid function

The second step is to vary the intercept (𝛽1) of the linear regression function that is
“hidden” within the sigmoid function. The reference function for 𝛽0 = 1 and 𝛽1 = 1
is again shown in light gray in the background in Figure 5.17. It can clearly be seen,
that the intercept in a sigmoid-function setting can be used as a kind of offset. Whilst
the curve is exactly 0.5 at 𝛽0 = 0, this intersection can be adapted by modeling the
intercept. For 𝛽0 > 0 the intersection point becomes > 0.5.
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5.3 Logistic Regression

5.3.5 𝛽0 = −5 … 0 and 𝛽1 = 1
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Figure 5.18: The influence of different paramters for the sigmoid function

The reference function for 𝛽0 = 1 and 𝛽1 = 1 is again shown in light gray in the
background in Figure 5.18. For an intercept < 0 the intersection point with the xaxis
then offsets the curve in the other direction compared with Figure 5.17. For 𝛽0 < 0 the
intersection point becomes < 0.5. In both cases the S-shape like characteristic of the
sigmoid function is retained.

5.3.6 Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) is a statistical method used for estimating the
parameters of a model (Starmer 2022). In this approach, the parameter values are chosen
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5 Regression Analysis

to maximize the likelihood function, which represents the probability of observing the
given data under the assumed statistical model. The idea is to find the parameter values
that make the observed data most probable.

In contrast to the cost function for linear regression (4.9), ̂𝑦𝑖 in logistic regression is a
non-linear function (5.9).

̂𝑦 = 1
1 + 𝑒−𝑧 (5.9)

Which is why the Maximum Likelihood Estimator is used.

Using the MLE basically means, to try different models (with different model parame-
ters) that maximize the likelihood of the parameters being true. Because it is easier to
look for minima (gradient descent), a loss function is formulated that can be used as a
loss function.

Figure 5.19: The principle of MLE.

− log𝐿(𝜃) = −
𝑛

∑
𝑖=1

𝑦 log(𝜎(𝜃𝑇 𝑥𝑖)) + (1 − 𝑦) log(1 − 𝜎(𝜃𝑇 𝑥𝑖)) (5.10)
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5.3 Logistic Regression

5.3.7 Modeling Production Data

FAIL

PASS

15 20 25
feed

Logistic regression data

Figure 5.20: The data for the logistic regression data.

In Figure 5.20 the data for the production data. The drive shafts have been rated
between PASSand FAIL and the lathing machine feed has been recorded. The question
is now, at which feed the drive shafts start to FAIL.

Table 5.5: The overview of the logistic regression data.
Characteristic N = 5001

feed 19.89 (18.55, 21.40)
pass_1_fail_0
    0 256 (51%)
    1 244 (49%)

1Median (Q1, Q3); n (%)

Table 5.5 shows an overview of the logistic regression data. PASS and FAIL are fairly
similar distributed.
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5 Regression Analysis

Table 5.6: The modeling of the logisitic regression data.
Characteristic log(OR)1 95% CI1 p-value
feed 0.46 0.35, 0.57 <0.001

1OR = Odds Ratio, CI = Confidence Interval

The model coefficients are shown in Table 5.6. Translated in equation (5.11) and (5.12)
we can see, what has been computed.

log( 𝑃
1 − 𝑃 ) = −9.17 + 0.46𝑥 (5.11)

𝑃
1 − 𝑃 = 𝑒−9.17+0.46𝑥 (5.12)

Therefore the models explains what the odds 𝑃
1−𝑃 are for a drive shaft to be FAIL or

PASS for a given feed.
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Figure 5.21: The probability (odds) for a drive shaft being PASS or FAIL for a given
feed
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5.3 Logistic Regression

Figure 5.21 shows the probability for a drive shaft PASS or FAIL for a given feed as well as
the confidence interval of the odds ratio for any given feed. For example the probability
for PASS at a feed of 20 is 49% with a confidence interval of 44% to 54%.

5.3.7.0.1 residuals
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Figure 5.22: Are the residuals of the model normally distributed?

5.3.7.1 Mc Fadden 𝑅2

McFadden’s 𝑅2 is a measure used to evaluate the goodness of fit for logistic regression
models and is calculated using (5.13).

𝑅2 = 1 − log(𝐿𝑚𝑜𝑑𝑒𝑙)
log(𝐿𝑛𝑢𝑙𝑙)

= 0.1198876 (5.13)
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5 Regression Analysis

It compares the model to the null-model. It is much smaller then the coefficient of
determination with values ranging between 0.2 … 0.4 already indicating a good model fit
in practice.

5.3.7.2 Confusion Matrix

Figure 5.23: A confusion matrix

A confusion matrix is a table used to evaluate the performance of a classification algo-
rithm. It provides a detailed breakdown of the actual versus predicted classifications,
enabling the calculation of various performance metrics. The matrix is particularly useful
for binary and multiclass classification problems.

On the x-axis usually the ground truth is depicted whereas on the y-axis the predictions
of the algorithm are shown. From this several performance metrics can be calculated.

• True Positive (TP): The number of positive instances correctly classified as posi-
tive.

• False Positive (FP): The number of negative instances incorrectly classified as
positive (also known as Type I error).

• True Negative (TN): The number of negative instances correctly classified as neg-
ative.

• False Negative (FN): The number of positive instances incorrectly classified as
negative (also known as Type II error).

5.3.7.2.1 Accuracy
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5.3 Logistic Regression

𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹𝑃 + 𝑇 𝑁 + 𝐹𝑁

Definition The ratio of correctly predicted instances (both true positives and true neg-
atives) to the total instances.

Interpretation Accuracy measures the overall correctness of the model. It indicates the
proportion of total predictions that were correct. While accuracy is useful, it can
be misleading in cases of imbalanced datasets where one class is more frequent
than the other.

5.3.7.2.2 Precision

𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

Definition The ratio of true positive instances to the total instances predicted as posi-
tive.

Interpretation Precision, also known as positive predictive value, measures the accuracy
of positive predictions. It is the proportion of correctly identified positive instances
out of all instances predicted as positive. High precision indicates a low false
positive rate.

5.3.7.2.3 Recall

𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

Definition The ratio of true positive instances to the total actual positive instances.

Interpretation Recall measures the model’s ability to correctly identify all positive in-
stances. It is the proportion of correctly identified positive instances out of all
actual positive instances. High recall indicates a low false negative rate.

5.3.7.2.4 Specificity

𝑇 𝑁
𝑇 𝑁 + 𝐹𝑃

Definition The ratio of true negative instances to the total actual negative instances.

159



5 Regression Analysis

Interpretation Specificity measures the model’s ability to correctly identify negative
instances. It is the proportion of correctly identified negative instances out of all
actual negative instances. High specificity indicates a low false positive rate.

5.3.7.2.5 F1 Score

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Definition The harmonic mean of precision and recall.

Interpretation The F1 Score combines precision and recall into a single metric. It pro-
vides a balance between the two, particularly useful when you need to take both
false positives and false negatives into account. The F1 score is especially helpful
when the class distribution is uneven or when you seek a balance between precision
and recall.

5.3.7.2.6 Summary on metrics

• Accuracy is best for overall performance but can be misleading for imbalanced
datasets.

• Precision is crucial when the cost of false positives is high.
• Recall is important when the cost of false negatives is high.
• Specificity complements recall, providing insight into the true negative rate.
• F1 Score offers a balanced measure, useful when both precision and recall are

important.
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5.3 Logistic Regression

5.3.7.3 Confusion Matrix in practice
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Figure 5.24: Confusion matrices at different probability thresholds

Figure 5.24 shows three different confusion matrices at different probability threshold
for the logistic regression model and the respective True Positive, False Positive, True
Negative and False Negative rates. On the x-axis the reference is depicted and the
true classes, being 0 for FAIL and 1 for PASS parts. The y-axis shows the prediction
of the respective model with the classes again being 0 for FAIL and 1 for PASS. The
probability threshold 𝑃 = 0.3 … 0.7 is the classification threshold of the model. The
logistic regression model computes a Probability based on the Predictor variable (feed).
This threshold then classifies the product as pass or fail
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5.3.7.4 Accuracy, correct classification rate, proportion of correct predictions
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5.3.7.5 Precision
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5.3 Logistic Regression

5.3.7.6 Recall, True positive rate, sensitivity, hit rate, detection rate
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5.3.7.7 Specificity, true negative rate, selectivity, true negative fraction, 1 - false
positive rate
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5.3 Logistic Regression

5.3.7.8 F1 Score, harmonic mean of precision and recall
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5 Regression Analysis

5.3.7.9 Receiver Operator Curve (ROC)
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5.3 Logistic Regression

5.3.7.10 METRICSSS!!!!!
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6 Chose a statistical Test

One Proportion Test: Used for binary categorical data to compare a sample propor-
tion to a known population proportion.

Chi-Square Goodness of Fit Test: Assesses whether observed categorical data fre-
quencies match expected frequencies.

One Sample T-Test: Compares a sample mean to a known or hypothesized population
mean for continuous data, assuming a normal distribution.

One Sample Wilcoxon Test: Non-parametric test for continuous data or ordinal data
to compare a sample’s median to a known population median.

Cochran’s Q Test: Evaluates proportions in three or more related categorical groups,
often with repeated measures.

Chi-Square Test of Independence: Determines if two categorical variables are asso-
ciated.

Pearson Correlation: Measures linear relationships between two continuous variables,
assuming normal distribution.

Spearman Correlation: Non-parametric alternative for non-linear or non-normally
distributed data.

T-Test for Independent Samples: Compares means of two independent groups for
continuous data, assuming normal distribution.

Welch T-Test for Independent Samples: Used when variances between two inde-
pendent groups are unequal.

Mann-Whitney U Test: Non-parametric alternative for comparing two independent
groups with non-normally distributed data.

T-Test for Paired Samples: Compares means of two related groups or repeated
measures, assuming normal distribution.

Wilcoxon Signed Rank Test: Non-parametric alternative for paired data or non-
normally distributed data.

One-Way ANOVA: Compares means of three or more independent groups for contin-
uous data, assuming normal distribution.
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6 Chose a statistical Test

Welch ANOVA: Utilized when variances between groups being compared are un-
equal.

Kruskal-Wallis Test: Non-parametric alternative for comparing three or more inde-
pendent groups with non-normally distributed data.

Repeated Measures ANOVA: For continuous data with multiple measurements
within the same subjects over time.

Friedman Test: Non-parametric alternative for analyzing non-normally distributed
data with repeated measures.

Figure 6.1: Roadmap to choosse the right test
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7 Production Statistics

7.1 Introduction to Production Statistics

Figure 7.1: What Production Statistics tries to quanitfy.

1. Output and Yield statistics refer to the measurement of both the quantity and
quality of products or services produced during a specific period. This includes
tracking metrics such as the number of units produced, yield rates, and defect rates,
as well as assessing production cycle times.

2. Resource Utilization statistics involve the monitoring and analysis of how ef-
ficiently resources such as labor, machinery, materials, and energy are used in
production processes. Key metrics in this category include machine uptime, down-
time, and overall resource efficiency.

3. Quality Control statistics play a vital role in evaluating the quality of products
or services by tracking defects, errors, and variations in the production process.
These statistics encompass defect rates, reject rates, and variation analysis to ensure
products meet specified quality standards.
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7 Production Statistics

4. Cost Analysis through production statistics involves assessing the cost-effectiveness
of production processes. This includes analyzing production costs, overhead ex-
penses, and calculating the cost per unit produced. Such data aids in making
informed decisions related to cost reduction and budgeting.

5. Inventory and Stock statistics pertain to the management of inventory levels
and turnover rates. These statistics also encompass lead times and tracking stock-
outs, which are crucial for efficient inventory management and ensuring product
availability.

6. Production Planning statistics are essential for optimizing production processes.
Metrics include capacity utilization, order fulfillment rates, and production lead
times. This data assists in scheduling and ensuring the efficient use of resources.

7. Downtime and Maintenance statistics track equipment breakdowns, mainte-
nance schedules, and production interruptions. Monitoring such data is vital for
minimizing production downtime and ensuring equipment operates efficiently.

8. Employee Productivity statistics evaluate workforce performance and efficiency.
Metrics such as output per worker and labor efficiency are used to assess employee
contributions and identify areas for improvement, including training needs.

9. Supply Chain Performance statistics extend beyond production to evaluate
the entire supply chain, including suppliers, logistics, and distribution. Metrics
like lead times, order fulfillment rates, and supplier performance data help ensure
the efficiency of the supply chain.

10. Environmental and Sustainability Metrics encompass resource consumption,
waste generation, and environmental impact. They are used to assess an organiza-
tion’s environmental footprint and implement sustainable practices.

7.2 Control Charts for Variables

7.2.1 The production

In Figure 7.2 the drive shaft production and the behaviour of the mission critical pa-
rameter diameter is shown over time.
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7.2 Control Charts for Variables
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Figure 7.2: The drive shaft production over time

7.2.2 Run Chart
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Figure 7.3: A run chart with control and warning limits without subgroups.
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7 Production Statistics

𝑈𝐶𝐿 = ̄𝑥 + 2.58𝑠𝑑(𝑥)√𝑛 with 𝑛 = 1 (7.1)

𝐿𝐶𝐿 = ̄𝑥 − 2.58𝑠𝑑(𝑥)√𝑛 with 𝑛 = 1 (7.2)

𝑈𝑊𝐿 = ̄𝑥 + 1.96𝑠𝑑(𝑥)√𝑛 with 𝑛 = 1 (7.3)

𝐿𝑊𝐿 = ̄𝑥 − 1.96𝑠𝑑(𝑥)√𝑛 with 𝑛 = 1 (7.4)

In Shewhart (Shewhart and Deming 1986) charts for statistical process control, con-
trol limits such as the Upper Control Limit (UCL), Lower Control Limit (LCL), Upper
Warning Limit (UWL), and Lower Warning Limit (LWL) play a crucial role. These
limits establish boundaries for normal process variability. By incorporating confidence
intervals, such as 97% or 99%, into these limits, a statistical framework is added, provid-
ing a nuanced understanding of process variability. A 97% confidence interval implies
that 97% of data points should fall within the calculated range, while a 99% interval ac-
commodates 99%. This approach enhances the sensitivity of Shewhart charts, aiding in
the timely detection of significant process shifts. The choice of confidence level depends
on the desired balance between false alarms and the risk of missing genuine deviations
from the norm.

7.2.3 X-bar chart
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Figure 7.4: A X-bar chart with control and warning limits based on subgroups of 𝑛 = 5
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7.2 Control Charts for Variables

𝑈𝐶𝐿 = ̄𝑥 + 2.58𝑠𝑑(𝑥)√𝑛 with 𝑛 = 5 (7.5)

𝐿𝐶𝐿 = ̄𝑥 − 2.58𝑠𝑑(𝑥)√𝑛 with 𝑛 = 5 (7.6)

𝑈𝑊𝐿 = ̄𝑥 + 1.96𝑠𝑑(𝑥)√𝑛 with 𝑛 = 5 (7.7)

𝐿𝑊𝐿 = ̄𝑥 − 1.96𝑠𝑑(𝑥)√𝑛 with 𝑛 = 5 (7.8)

An X-bar chart is a statistical tool for quality control, used to monitor process stability
over time. It involves collecting data, calculating subgroup means, determining control
limits, and plotting the data on a chart. By monitoring points relative to the control
limits, it helps identify shifts in the process mean, allowing corrective action for consistent
quality.

It is effective in quality control because it focuses on detecting changes in the process
mean. By setting statistical control limits, it distinguishes between common and special
causes of variation. When data points fall outside these limits, it signals the presence
of external factors, prompting corrective action. The chart’s visual representation of
data points over time facilitates early issue detection, supporting a proactive approach
to maintaining process stability and continuous improvement in quality control.

7.2.4 S-Chart
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Figure 7.5: The s chart with control and warning limits.

175



7 Production Statistics

𝑈𝐶𝐿 = 𝜎 ∗ √𝜒2
1−𝛽=0.995;𝑛−1

𝑛 − 1 with 𝑛 = 5 (7.9)

𝐿𝐶𝐿 = 𝜎 ∗ √𝜒2
1−𝛽=0.005;𝑛−1

𝑛 − 1 with 𝑛 = 5 (7.10)

𝑈𝑊𝐿 = 𝜎 ∗ √𝜒2
1−𝛽=0.975;𝑛−1

𝑛 − 1 with 𝑛 = 5 (7.11)

𝐿𝑊𝐿 = 𝜎 ∗ √𝜒2
1−𝛽=0.025;𝑛−1

𝑛 − 1 with 𝑛 = 5 (7.12)

An S chart, or standard deviation chart, is a type of control chart used in statistical
process control. It is designed to monitor the variability or dispersion of a process over
time. The S chart displays the sample standard deviation of a process by plotting it
against time or the sequence of samples. Similar to other control charts, it typically
includes a central line representing the average standard deviation and upper and lower
control limits. The S chart is useful for detecting shifts or trends in the variability of a
process, allowing for timely adjustments or interventions if needed.

7.3 Control Charts for Attributes

7.3.1 NP Chart
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Figure 7.6: A NP-Chart with control limits.
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7.3 Control Charts for Attributes

𝐶𝐿 = 𝑛 ̄𝑝 ± 3√𝑛 ̄𝑝(1 − ̄𝑝) (7.13)

An NP chart, also known as a Number of Defects Per Unit chart, is a statistical tool
used in quality control to monitor the number of defects or errors in a process over time.
It is commonly employed in manufacturing and other industries to assess the stability
and performance of a production process. The chart typically displays the number
of defects observed in a sample of units or products, allowing for the identification of
trends, patterns, or variations in the defect rates. This information aids in quality
improvement efforts by enabling organizations to take corrective actions and maintain
consistent product or service quality.

7.3.2 P Chart
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Figure 7.7: A P-Chart with control limits.

𝐶𝐿 = ̄𝑝 ± 3√ ̄𝑝(1 − ̄𝑝)
𝑛 (7.14)

The P chart is designed to track the proportion of nonconforming items or defects within
a sample or subgroup over consecutive periods. The chart typically consists of a hori-
zontal axis representing time periods and a vertical axis representing the proportion of
nonconforming items. It helps identify variations and trends in the process, allowing for
timely corrective actions when necessary.

P charts are commonly used in industries where the output is binary, such as the presence
or absence of a specific attribute, and provide a visual representation of the process’s
performance, aiding in quality improvement efforts.
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7 Production Statistics

7.4 Process Capability and Six Sigma

7.4.1 How good is good enough?

Figure 7.8: What are the joint probabilities?

A success rate of 95% per step (Figure 7.8) sounds at first glance like a successful
process. After all, having a 95% chance of winning the lottery would be awesome. Yet,
the question is: What are the joint probabilities when we connect five steps sequentially?
From previous chapters we know that the joint probability can be calculated in (7.15).

𝑃𝑔𝑒𝑠 = 𝑃1 ∗ 𝑃2 ∗ 𝑃3 ∗ 𝑃4 ∗ 𝑃5 = 0.95(𝑛=5) = 0.774 ≈ 77.4% (7.15)
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Figure 7.9: Probabilities for success in sequence.

The joint probability for n-steps in sequence can therefore be estimated using (7.15)
and visually represented in Figure 7.9. On the x-axis the number of steps is depicted
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7.4 Process Capability and Six Sigma

whereas on the y-axis the joint probability is shown for the respective step index. As also
calculated in (7.15) after 𝑛 = 5 steps the joint probability for a good part drops to around
77%, which is not acceptable. Figure 7.9 shows that not even 98% probability for a good
part for a single step results in an acceptable joint probability (𝑃 = 0.98𝑛=5 = 0.904). A
staggering probability of 99.7% for a single step is necessary to still reach a probability
for a good part of 98%, and this is only true for 𝑛 = 5steps. For an acceptable parts
per milltion (ppm) rate the acceptable single step probability is 99.975% as shown in
Figure 7.9.

Figure 7.10: The origin of the term Six Sigma (6𝜎)

What that means in a tolerance-specification setting is shown in Figure 7.10. In order to
ensure a 99.975% for a continuous variable, the process variation (here measured as pro-
cess standard deviation) must fit at least 6 times into the actual tolerance/specification
window of the Critical to Quality (CTQ) measure. Additionally, this is only true if the
process is centered. The term 6𝜎 carries this inherent property for a 0𝑝𝑝𝑚 production,
which is favoured by many, but achieved by few.

7.4.2 The Six Sigma Project Model (DMAIC)

The Six Sigma Project model consists of five phases in total: (D)efine, (M)easure,
(A)nalyse, (I)mprove, (C)ontrol. In essence these project phases are the application
of the scientific method, but in a systematic and industry friendly way.

The Define Phase involves setting the project’s goals and objectives, identifying key
stakeholders, developing a high-level process map, and defining customer requirements
and critical-to-quality (CTQ) characteristics. Additionally, the project scope is estab-
lished, and a project charter is developed to guide the overall initiative.

In the Measure Phase, key process metrics are identified, and relevant data is collected
to assess the current state of the process. This phase includes analyzing process capabil-
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7 Production Statistics

Figure 7.11: DMAIC Process

ity, creating detailed process maps, performing baseline measurements, and identifying
potential data sources to ensure comprehensive data collection.

During the Analyze Phase, potential root causes of process variation are identified
through data analysis using statistical tools. Hypotheses for root causes are devel-
oped and verified through further data analysis. Root causes are then prioritized based
on their impact and feasibility, and findings are validated with stakeholders to ensure
accuracy and relevance.

The Improve Phase focuses on generating and evaluating potential solutions for process
improvement. Implementing these improvements involves developing an implementation
plan, conducting pilot tests if applicable, and optimizing the process based on feedback.
Control measures are implemented to sustain the improvements achieved.

Finally, the Control Phase involves developing control plans to monitor process perfor-
mance continuously. This includes establishing process controls and standard operating
procedures, implementing mistake-proofing measures, and defining key performance in-
dicators (KPIs). Additionally, training programs for process stakeholders are developed,
and a system for ongoing monitoring and feedback is established to ensure the process
remains effective over time.
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7.4 Process Capability and Six Sigma

7.4.3 Process Capability - idea

Figure 7.12: The idea of process capabilities

Process capability refers to the ability of a process to consistently produce outputs that
meet predetermined specifications or requirements. It is a measure of how well a process
performs relative to its specifications. The general idea behind process capability is
to assess the inherent variability of a process and determine whether it is capable of
producing products or services within the desired quality limits.

1. Specification Limits: These are the predetermined limits or requirements for a
particular process output, defining the range within which the product or service
should fall to meet customer expectations.

2. Process Variation: This refers to the natural variability inherent in the process.
Sources of variation can include factors such as machine performance, material
properties, human factors, and environmental conditions.

3. Process Capability Indices: These are statistical measures used to quantify the
relationship between process variation and specification limits. Common indices
include 𝐶𝑝, 𝐶𝑝𝑘, 𝑃𝑝, and 𝑃𝑝𝑘, which provide insights into whether a process is
capable of meeting specifications and how well it is centered within the specification
limits.

4. Assessment and Improvement: Once process capability is assessed, steps can
be taken to improve it if necessary. This may involve reducing process variation,
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adjusting process parameters, implementing quality control measures, or redesign-
ing the process altogether.

Overall, the goal of analyzing process capability is to ensure that processes are capable of
consistently delivering products or services that meet customer requirements, minimize
defects, and optimize quality and efficiency.

7.4.4 High Accuracy - Low Precision

Figure 7.13: The spreaded - High Accuracy, Low Precision

In this scenario, the process consistently produces results that are very close to the target
or desired value (high accuracy). However, the variation among individual measurements
is large, meaning they are not tightly clustered around the target value (low precision).
For example, if a machine consistently produces parts with dimensions close to the
desired specifications but with significant variation in each part’s dimensions, it exhibits
high accuracy but low precision.
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7.4 Process Capability and Six Sigma

7.4.5 Low Accuracy - Low Precision

Figure 7.14: The worst - Low Accuracy, Low Precision

Here, the process consistently produces results that are far from the target or desired
value (low accuracy). Additionally, the variation among individual measurements is
large, indicating low precision. An example could be a manufacturing process that con-
sistently produces parts with dimensions that are both far from the desired specifications
and vary significantly from one part to another.

7.4.6 Low Accuracy - High Precision

Figure 7.15: The missing the mark - Low Accuracy, High Precision

183



7 Production Statistics

This scenario involves a process that consistently produces results that are tightly clus-
tered around a single point, but that point is far from the target or desired value (low
accuracy). For instance, if a weighing scale consistently displays a weight that is slightly
off from the true weight but shows very little variation between repeated measurements,
it demonstrates low accuracy but high precision.

7.4.7 High Accuracy - High Precision

Figure 7.16: The desired - High Accuracy, High Precision

This is the ideal scenario where the process consistently produces results that are both
very close to the target or desired value (high accuracy) and tightly clustered around that
value (high precision). For example, a manufacturing process that consistently produces
parts with dimensions very close to the desired specifications and with minimal variation
between individual parts exhibits both high accuracy and high precision.
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7.4 Process Capability and Six Sigma

7.4.8 Computing Process Capabilities

Figure 7.17: The idea to calculate the 𝐶𝑝𝑘

𝐶𝑝 = 𝑈𝑆𝐿 − 𝐿𝑆𝐿
6 ∗ 𝑠𝑑 (7.16)

𝐶𝑝𝑘 = min(𝑈𝑆𝐿 − ̄𝑥, ̄𝑥 − 𝐿𝑆𝐿)
3 ∗ 𝑠𝑑 (7.17)

𝐶𝑝 compares the spread of the process variation to the width of the specification lim-
its (7.16). A 𝐶𝑝 value greater than 1 indicates that the process spread fits within the
specification limits, suggesting that the process has the potential to meet specifications.
However, 𝐶𝑝 does not take into account the process mean, so it does not provide in-
formation about process centering. For a more comprehensive assessment of process
capability, both 𝐶𝑝 and 𝐶𝑝𝑘 are often used together.

The 𝐶𝑝𝑘 value indicates the capability of the process relative to the specified limits (7.17).
A 𝐶𝑝𝑘 value greater than 1 indicates that the process spread (6 standard deviations) fits
within the specification limits. A value less than 1 indicates that the process spread
exceeds the specification limits, indicating potential issues with meeting specifications.
A higher 𝐶𝑝𝑘 value indicates better process capability.
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7.4.9 Process Capabilities and ppm
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Figure 7.18: The failed parts per million vs. the 𝐶𝑝𝑘

Process capability and parts per million (PPM) are closely related metrics used to assess
the performance of manufacturing processes. They provide a statistical measure of how
well a process can produce output within specified limits. PPM is a measure of the
number of defective parts per million produced by the process. The connection between
process capability indices and PPM can be understood through statistical distributions,
primarily the normal distribution, and the concept of defects or non-conformance.

The connection between process capability indices and PPM can be established through
the Z-score (Z-standardization), which translates process capability into the probability
of defects.

1. Using 𝐶𝑝: Assuming the process is centered and follows a normal distribution:
𝑍 = 3𝐶𝑝. The corresponding PPM can be found from standard normal distribution
tables. For example, if 𝐶𝑝 = 1, then 𝑍 = 3, and the area under the normal curve
beyond 3 standard deviations on either side is approximately 0.0027, or 2700𝑃𝑃𝑀 .

2. Using 𝐶𝑝𝑘 𝐶𝑝𝑘 directly relates to the Z-score: 𝑍 = 3𝐶𝑝𝑘. The PPM can be
calculated using the cumulative distribution function for the normal distribution.
For example, if 𝐶𝑝𝑘 = 1.33, then 𝑍 = 3 × 1.33 = 3.99. Using standard normal
distribution tables, the area beyond 𝑍 = 3.99 is approximately 0.000066, or 66𝑝𝑝𝑚.
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7.5 The role of measurement accuracy in production

7.5.1 Measurement Errors

Figure 7.19: Measurement Errors arise during every measurement.

In scientific experiments and real-world measurements, there are often inherent sources of
random error (Nuzzo 2014). These errors can introduce variability into measurements,
and the accumulation of these errors often conforms to a normal distribution. For
instance, when measuring the diameter of an object with a caliper, small measurement
errors can cause the observed values to follow a normal distribution. Even during such
a simple measurement some random errors may include:

1. Parallax Error: Parallax can introduce random errors if the observer’s eye is not
consistently aligned with the scale or graduations during measurements.

2. Dirt or Debris: Foreign particles or debris on the measuring surfaces can lead
to random measurement errors by causing slight variations in the contact points
between the caliper and the object.

3. Jaw Alignment: Small variations in the alignment of the caliper jaws from one
measurement to another can introduce random errors in measurements.

4. Material Deformation: When measuring soft or deformable materials, random
errors can occur due to variations in the material’s response to pressure during
different measurements.

5. Human Error: Random errors can arise from misreading the scale or not position-
ing the caliper precisely on the object, especially if different operators are involved.
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6. Slop or Play in the Jaws: Variability in the amount of play or slop in the caliper’s
jaws from one measurement to another can lead to random errors in measurements.

7.5.2 Significant Digits in Production

Figure 7.20: Drawings and specifications are just an approximation of reality.

Significant digits, or significant figures, are vital for precision and quality in production.
They ensure precision, quality, and consistency in production, leading to better efficiency
and customer satisfaction. Significant digits indicate the precision of measurements,
ensuring products meet quality standards and specifications.

Applications:

1. Quality Control: Accurate measurements ensure consistent product quality.
2. Tolerances: Precise tolerances (e.g., ±0.05𝑚𝑚) must be adhered to.
3. Fit and Interchangeability: Parts must fit together correctly, requiring precise

measurements.
4. Calibration: Instruments must match the required significant digits for accuracy.
5. Documentation: Accurate recording of measurements is essential for quality re-

ports and compliance.
6. Training: Employees must understand and apply significant digits to maintain

standards.

Best Practices:

188



7.5 The role of measurement accuracy in production

• Reduce Human Error: Training and audits are essential.
• Use Proper Instruments: Ensure tools can measure accurately.
• Control Environment: Manage factors like temperature and humidity.
• Follow Rounding Rules: Apply proper rounding to maintain precision.

7.5.2.1 General Rule of Thumb

To maintain accuracy and avoid overestimating the precision of results, it’s advisable
not to report more significant digits than justified by the precision of the input measure-
ments.

7.5.2.2 Rule of Ten

In practical terms, for a number to be considered significant, it should be at least ten
times greater than the smallest unit of measure (i.e., the least significant digit). This
helps in avoiding overestimating the precision and ensures that the reported figures are
meaningful.

7.5.2.3 Addition and Subtraction

When performing addition or subtraction, the result should be reported with the same
number of decimal places as the measurement with the fewest decimal places. For
instance, if you add 12.11 (two decimal places) to 0.4 (one decimal place), the result
should be reported with one decimal place, as 12.5.

7.5.2.4 Multiplication and Division

When performing multiplication or division, the result should be reported with the same
number of significant digits as the measurement with the fewest significant digits. For
example, if you multiply 2.34 (three significant digits) by $0.0$5 (one significant digit),
the result should be reported with one significant digit, as 0.1.

7.5.2.5 edge cases

Significant digits can help with edge cases that naturally occur during measurement
processes. As depicted in Figure 7.21, the first two measurements are well within spec-
ification. The third measurement can actually not be interpreted, as the measurement
instrument seems not to be fit for purpose. The fourth measurement shows, that the
product is within the specification, it always holds the number with the smallest number
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Figure 7.21: Edge cases during measuring a simple part.

of digits. The measurement of the fifth product is just within specification, the gage that
shoed the last reading is not accurate enough.

There are many rules involved in these kind of edge cases including the rounding of
number. It is referred to (Standards, (U.S.), and SEMATECH. 2002) or the national
standards for more elaborate discussions about this manner.

7.5.3 Measurement System Analysis Type I

In conducting a Measurement System Analysis Type I (MSA1), the initial step involves
focusing on gage as the sole source of variation. To achieve this, 50 measurements are
performed, each repeated on a reference part. This process allows for the isolation and
assessment of the gage’s impact on the overall measurement system, ensuring that any
observed variability is attributed solely to the gage. The process of doing a MSA1 is
fairly standardized.

7.5.3.1 Potential Capability index 𝐶𝑔

From a MSA1 the potential Measurement System Capability Index 𝐶𝑔 can be computed
via (7.18).

𝐶𝑔 = 𝐾/100 ∗ 𝑇 𝑜𝑙
𝐿 ∗ 𝜎 (7.18)
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𝑇 𝑜𝑙 Tolerance
𝐶𝑔 Capability Gage
K percentage of the tolerance (20%)
𝜎 standard deviations of the tolerance
L number of standard deviations that represent the process (6×)

7.5.3.1.1 Capability index with systematic error 𝐶𝑔𝑘

Very similar to the process capability, a 𝐶𝑔 gives only the potential capability as it does
not include if the measures are centered around a mean. This is overcome by computing
the Measurement Capability Index with systematic error 𝐶𝑔𝑘, which incorporates the
mean via (7.19).

𝐶𝑔𝑘 = (0.5 ∗ 𝐾/100) ∗ 𝑇 𝑜𝑙 − | ̄𝑥 − 𝑥𝑡𝑟𝑢𝑒|
3 ∗ 𝜎 (7.19)

𝑇 𝑜𝑙 Tolerance
̄𝑥 mean of the measurements

K percentage of the tolerance (20%)
𝑥𝑡𝑟𝑢𝑒 the “true” value of the reference (calibration)
𝜎 standard deviation of the measurements

7.5.3.2 MSA1 example

Table 7.1: The summary of the raw data for the MSA1.
Characteristic N = 501

measured_data 20.303 (0.005)

1Mean (SD)

In Table 7.1 the raw data that was collected during the experiments is depicted, whereas
in Figure 7.22 the same data is shown in graphical format.

On the x-axis the measurement index is shown, the y-axis shows the measurment
value. One of the main advantages of a MSA1 is, that a reference value is known,
because the values are taken agains a standard reference normal. This true value (x_-
true in Figure 7.22, dashed black line) allows the estimation of a systematic error. The
20% tolerance (7.19) is shown as dashed green line. This is the reduced tolerance in
which the gage shall be capable to produce good measurement values.
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Figure 7.22: The data as measured during the MSA1 with all measures included.

7.5.3.2.1 Data Distribution

Measurement errors are often assumed to be normally distributed due to the CLT and the
nature of random processes involved. The CLT states that the sum of many independent,
random variables tends to follow a normal distribution, even if the original variables are
not normally distributed. Measurement errors typically result from the combination
of numerous small, independent errors, such as instrument precision, environmental
factors, and human mistakes. This aggregation leads to a normal distribution of the
overall errors.

Additionally, many error sources are random and independent, further supporting the
normal distribution assumption. The normal distribution is mathematically convenient,
being fully described by its mean and variance, which simplifies statistical analysis and
hypothesis testing. Empirical evidence across various fields also shows that measurement
errors often approximate a normal distribution.

While the normal distribution is a useful assumption, it may not always be valid. In
cases with asymmetric errors, heavy tails, or significant outliers, other distributions may
be more appropriate. Nonetheless, for many practical purposes, assuming a normal
distribution for measurement errors is reasonable and effective.

7.5.3.2.2 computed values
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Figure 7.23: By definition, measurement errors shoul be normally disitrbuted.

Table 7.2: 𝐶𝑔, 𝐶𝑔𝑘 for the measured values

Cg Cgk
2.13 2.02

In Table 7.2 the numeric values for 𝐶𝑔 and 𝐶𝑔𝑘 are shown. Both values are well above
1.33 which indicates that the gage is fit for the measurement purpose at hand (defined
by the tolerance). The potential gage capability (𝐶𝑔) is greater than the actual gage
capability 𝐶𝑔𝑘 which implies a systematic error, but the numeric values being > 2 there
seems not to be any reason to take serious action. If the systematic error is significant
could be tested using the t-test for one variable.
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7.5.4 Measurement System Analysis Type II (Gage R&R)

Figure 7.24: The general principle of a gage R & R

A Gage R&R study assesses the variation in measurements from a specific process by
measuring the same parts multiple times with the same instrument by different operators.
It helps determine the reliability of the measurement system and identifies areas for
improvement.

7.5.4.1 Definitions

Accuracy The closeness of agreement between a test result and the accepted reference
value(Cano, Moguerza, and Redchuk 2012).

Trueness The closeness of agreement between the average value obtained from a large
series of test results and an accepted reference value(Cano, Moguerza, and Redchuk
2012).

Precision The closeness of agreement between independent test results obtained under
stipulated conditions(Cano, Moguerza, and Redchuk 2012).

Repeatability Precision under repeatability conditions (where independent test results
are obtained using the same method on identical test items in the same labo-
ratory by the same operator using the same equipment within short intervals of
time)(Cano, Moguerza, and Redchuk 2012).

Reproducibility Precision under reproducibility conditions (where test results are ob-
tained using the same method on identical test items in different laboratories
with different operators using different equipment)(Cano, Moguerza, and Redchuk
2012).
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7.5 The role of measurement accuracy in production

7.5.4.2 Introductory example

• A battery manufacturer makes several types of batteries for domestic use.
• Voltage is Critical To Quality (CTQ)

• the parts are the batteries 𝑎 = 3
• the appraisers are the voltmeters 𝑏 = 2
• measurement is taken three times 𝑛 = 3
• 𝑎 × 𝑏 × 𝑛 = 3 × 2 × 3 = 18 measurements

7.5.4.3 The data

battery: 1 battery: 2 battery: 3

voltmeter: 1voltmeter: 2voltmeter: 1voltmeter: 2voltmeter: 1voltmeter: 2

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1.4
1.5
1.6
1.7
1.8

run

vo
lta

ge

Figure 7.25: The data from the 18 experiments for the GageR&R

7.5.4.4 The analysis

anova(lm(voltage ~ battery + voltmeter + battery * voltmeter,
data = ss.data.batteries))

Analysis of Variance Table

Response: voltage
Df Sum Sq Mean Sq F value Pr(>F)

battery 2 0.063082 0.031541 1.9939 0.1788
voltmeter 1 0.044442 0.044442 2.8095 0.1195
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battery:voltmeter 2 0.018472 0.009236 0.5839 0.5728
Residuals 12 0.189821 0.015818

WOW!

7.5.4.5 Variance decomposition - the theory

7.5.4.5.1 Repeatability

𝜎2
𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑆𝐸 (7.20)

• directly obtainable in ANOVA table

7.5.4.5.2 Reproducibility

𝜎2
𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑡𝑦 = 𝜎2

𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟 + 𝜎2
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (7.21)

𝜎2
𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟 = 𝑀𝑆𝐵 − 𝑀𝑆𝐴𝐵

𝑎 × 𝑛 (7.22)
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7.5 The role of measurement accuracy in production

𝜎2
𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟 Variance introduced by appraisers

𝑀𝑆𝐵 Mean of squares - B
𝑀𝑆𝐴𝐵 Mean squares of interaction - AB
𝑎 number of levels for factor - number of batteries: 3
𝑛 number of replicated measures: 3

𝜎2
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑆𝐵𝐴 − 𝑀𝑆𝐸

𝑛 (7.23)

𝜎2
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 Variance introduced by interaction

𝑀𝑆𝐴𝐵 Mean squares of interaction - AB
𝑀𝑆𝐸 Mean squares of error
𝑛 number of replicated measures: 3

7.5.4.5.3 Gage R&R

𝜎2
𝐺𝑎𝑔𝑒 𝑅&𝑅 = 𝜎2

𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜎2
𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (7.24)

All variance is calculated that comes from the Gage!

Are we finished?

We measure something, so what about the part?

7.5.4.5.4 Part to Part

𝜎2
𝑃𝑎𝑟𝑡 𝑡𝑜 𝑃𝑎𝑟𝑡 = 𝑀𝑆𝐴 − 𝑀𝑆𝐴𝐵

𝑏 × 𝑛 (7.25)

𝜎2
𝑃𝑎𝑟𝑡 𝑡𝑜 𝑃𝑎𝑟𝑡 Variance introduced by the parts

𝑀𝑆𝐴 Mean of squares - A
𝑀𝑆𝐴𝐵 Mean squares of interaction - AB
𝑏 number of appraisers - number of voltmeters: 2
𝑛 number of replicated measures: 3
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7.5.4.5.5 Total Variability

7.5.4.6 Variance decomposition - the values

𝜎2
𝑅𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.0158

𝜎2
𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟 = 0.0039

𝜎2
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0 < 0 → 0

𝜎2
𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.0039

𝜎2
𝐺𝑎𝑔𝑒 𝑅&𝑅 = 0.0197

𝜎2
𝑃𝑎𝑟𝑡 𝑡𝑜 𝑃𝑎𝑟𝑡 = 0.0037

𝜎2
𝑇 𝑜𝑡𝑎𝑙 = 0.0234

7.5.4.7 Gage R&R “standardized output”

7.5.4.7.1 AVNOVA table

Df Sum Sq Mean Sq F value Pr(>F)
battery 2 0.06308 0.03154 3.415 0.227
voltmeter 1 0.04444 0.04444 4.812 0.160
battery:voltmeter 2 0.01847 0.00924 0.584 0.573
Repeatability 12 0.18982 0.01582
Total 17 0.31582
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7.5.4.7.2 ANOVA reduced model

Df Sum Sq Mean Sq F value Pr(>F)
battery 2 0.06308 0.03154 2.120 0.157
voltmeter 1 0.04444 0.04444 2.987 0.106
Repeatability 14 0.20829 0.01488
Total 17 0.31582

7.5.4.7.3 Variance decomposition

VarComp %Contrib
Total Gage R&R 0.018162959 86.74
Repeatability 0.014878111 71.05
Reproducibility 0.003284848 15.69

voltmeter 0.003284848 15.69
Part-To-Part 0.002777127 13.26
Total Variation 0.020940086 100.00

7.5.4.7.4 Study Variance

StdDev StudyVar %StudyVar %Tolerance
Total Gage R&R 0.13477002 0.8086201 93.13 80.86
Repeatability 0.12197586 0.7318552 84.29 73.19
Reproducibility 0.05731359 0.3438816 39.61 34.39
voltmeter 0.05731359 0.3438816 39.61 34.39

Part-To-Part 0.05269846 0.3161907 36.42 31.62
Total Variation 0.14470690 0.8682414 100.00 86.82

7.5.4.7.5 ndc - number of distinct categories

[1] 1

7.5.4.7.6 standardized graphical output
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Figure 7.26: A standardized graphical output after a complete GageR&R

7.5.4.8 Gage R&R in the classroom

• 3 parts

• 3 volunteers

• 1 recorder

• 1 gage

• 10 experiments

• 3 repetitions

• randomize the trials

• now do it

7.5.4.9 Attribute Agreement Analysis

Attribute Agreement Analysis (AAA) is a statistical method used to evaluate the agree-
ment among multiple observers when assigning categorical ratings to items. It involves
defining attributes, selecting observers, collecting ratings, and analyzing the data to
determine the level of agreement. This helps ensure the reliability of assessments and
informs decision-making processes.
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7.5.4.9.1 Setup

7.5.4.9.2 Results

Table 7.3
appraiser runs units reference results

1 1 3 bad bad
1 1 1 good good
1 1 2 bad good
2 1 3 bad good
2 1 1 good good
2 1 2 bad good
1 2 3 good good
1 2 1 bad bad
1 2 2 bad bad
2 2 3 good bad
2 2 1 bad bad
2 2 2 bad good

7.5.4.9.3 Overall agreement

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 100 × 𝑋
𝑁 (7.26)
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𝑋 number of times appraisers agree with reference
𝑁 number of rows with valid data

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 58.3%

7.5.4.9.4 Appraiser Agreement

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑎𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟 = 100 × 𝑋
𝑁 (7.27)

𝑋 number of times the single appraisers agrees with reference
𝑁𝑖 number of runs for the 𝑖-th appraiser

𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟1 = 83.3%
𝐴𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟2 = 33.3%

7.5.4.9.5 Reference Agreement

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 100 × 𝑋
𝑁 (7.28)

𝑋 number of times result agrees with the reference
𝑁𝑖 number of runs for the 𝑖-th result

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑏𝑎𝑑 = 50%
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔𝑜𝑜𝑑 = 75%

7.5.4.9.6 Run agreement

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑟𝑢𝑛 = 100 × 𝑋
𝑁 (7.29)

𝑋 number of reference agreement in runs
𝑁𝑖 number of runs for the 𝑖-th run

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒1 = 50%
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒2 = 66.7%
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7.5 The role of measurement accuracy in production

7.5.4.9.7 Appraiser and reference agreement

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑎𝑝𝑝𝑟𝑎𝑖𝑠𝑒𝑟 𝑟𝑒𝑓 = 100 × 𝑋
𝑁 (7.30)

𝑋 number of reference agreement in for appraisers in reference class
𝑁𝑖 number of agreements for the 𝑖-th appraiser and the 𝑖-th standard

Table 7.4
appraiser reference overall_agreement

1 bad 75.00%
1 good 100.00%
2 bad 25.00%
2 good 50.00%

7.5.4.9.8 graphical representation
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Figure 7.27: Single appraiser agreement to reference.
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Figure 7.28: How good is the agreement in the reference?
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Figure 7.29: Single run agreement to reference.
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Figure 7.30: Appraiser ref agreement
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8 Introduction to Design of Experiments
(DoE)
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Figure 8.1: OFAT quickly becomes cumbersome
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8.2 curse of dimensionality

𝑛𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 = 𝑛𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑠
𝑙𝑒𝑣𝑒𝑙𝑠 (8.1)

8.3 Concept of ANOVA

Figure 8.2: classical ANOVA concept

8.4 Basics of Experimental Design

Design of Experiments

8.5 Experimental planning strategies

1.No planning

• bad way of conducting an experiment
• happens often enough (trial-and-error approach)

2.Plan everything at the beginning

• after definition the entire budget is allocated to perform all possible experiments
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8.6 pizza dough example

Figure 8.3: The connection between ANOVA and DoE.

• does not take into account intermediate results
• spend money on experiments that contributed nothing to our knowledge of the

process

3.Sequential planning

• first stage, a reduced number of trials will be conducted to make decisions about
the next stage

• first stage should consume between 25% and 40% of the budget
• most of the budget should be spent in subsequent stages, taking into account

previous results.

8.6 pizza dough example

• representation of factors and levels for a designed experiment
• example: pizza dough

– food manufacturer is looking for the best recipe for its main product: pizza
dough sold in retailers

– three factors shall be determined: flour, salt, baking powder: bakPow
– response will be determined by experts as score
– factors are to be set low (−) and high (+)
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8.7 design matrix

Table 8.1: The design matrix for the pizza dough experimentation
flour salt bakPow score

- - - NA
+ - - NA
- + - NA
+ + - NA
- - + NA
+ - + NA
- + + NA
+ + + NA

Be bold, but not stupid!

8.7.1 progressive experimentation

• OFAT

– will leave out interactions of variables

• 2𝑘: two-level factor experimentation
• including replications

1. Screening experiments: to select the most important factors
2. Characterizing experiments: to study the model (residuals) of 𝑌 = 𝑓(𝑋)
3. Optimization experiments: operational minimum value for the process

8.8 Model assumptions

• randomization!

Table 8.2: The randomized design matrix for experimental runs
flour salt bakPow score ord

+ - + NA 1
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8.9 experimental model

- - - NA 2
- + + NA 3
+ + - NA 4
+ + + NA 5
- - + NA 6
- + - NA 7
+ - - NA 8

8.9 experimental model

Figure 8.4: The experimental model for a DoE

8.10 analytical model

Figure 8.5: The experimental model with the fitted linear model.
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8.11 2𝑘 factorial Designs

𝑘 number of factors to be studied, all with 2 levels

𝑛 number of replications → total number of experiments = 𝑛 × 2𝑘

𝐴, 𝐵, … factors (uppercase latin letters)

𝛼, 𝛽, … main effects

8.12 complete analytical model

• three factors, 𝑛 replications

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘
+ (𝛼𝛽)𝑖𝑗 + (𝛼𝛾)𝑖𝑘 + (𝛽𝛾)𝑘𝑙
+ (𝛼𝛽𝛾)𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘𝑙

(8.2)

𝑖 = 1, 2 𝑗 = 1, 2 𝑘 = 1, 2 𝑙 = 1 … 𝑛
𝜖𝑖𝑗𝑘𝑙 ∼ 𝑁(0, 𝜎)

(8.3)

𝜇 global mean of the response

𝛼𝑖 effect of factor 𝐴 at level 𝑖
𝛽𝑗 effect of factor 𝐵 at level 𝑗
𝛾𝑘 effect of factor 𝐶 at level 𝑘
(𝛼𝛽)𝑖𝑗 effect of the interaction of factors 𝐴 and 𝐵 at levels 𝑖 and 𝑗

(𝛼𝛾)𝑖𝑘 effect of the interaction of factors 𝐴 and 𝐶 at levels 𝑖 and 𝑘
(𝛽𝛾)𝑗𝑘 effect of the interaction of factors 𝐵 and 𝐶 at levels 𝑗 and 𝑘
(𝛼𝛽𝛾)𝑖𝑗𝑘 effect of the interaction of factors 𝐴, 𝐵 and 𝐶 at levels 𝑖, 𝑗 and 𝑘
𝜖𝑖𝑗𝑘𝑙 random error component of the model

8.12.1 pizza dough example raw data

“… bake the pizza for 9min at 180°C …”
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8.12 complete analytical model

repl flour salt bakPow score ord
1 - - - 5.33 2
1 + - - 6.99 4
1 - + - 4.23 8
1 + + - 6.61 5
1 - - + 2.26 1
1 + - + 5.75 6
1 - + + 3.26 3
1 + + + 6.24 7
2 - - - 5.70 2
2 + - - 7.71 4
2 - + - 5.13 8
2 + + - 6.76 5
2 - - + 2.79 1
2 + - + 4.57 6
2 - + + 2.48 3
2 + + + 6.18 7

(Cano, Moguerza, and Redchuk 2012)

8.12.2 pizza dough example summarised data

flour salt bakPow mean_score
- - - 5.515
- - + 2.525
- + - 4.680
- + + 2.870
+ - - 7.350
+ - + 5.160
+ + - 6.685
+ + + 6.210

8.12.3 pizza dough recipe full model

doe.model1 <- lm(score ~ flour + salt + bakPow +
flour * salt + flour * bakPow +
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salt * bakPow + flour * salt * bakPow,
data = ss.data.doe1)

summary(doe.model1)

Call:
lm(formula = score ~ flour + salt + bakPow + flour * salt + flour *

bakPow + salt * bakPow + flour * salt * bakPow, data = ss.data.doe1)

Residuals:
Min 1Q Median 3Q Max

-0.5900 -0.2888 0.0000 0.2888 0.5900

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.5150 0.3434 16.061 2.27e-07 ***
flour+ 1.8350 0.4856 3.779 0.005398 **
salt+ -0.8350 0.4856 -1.719 0.123843
bakPow+ -2.9900 0.4856 -6.157 0.000272 ***
flour+:salt+ 0.1700 0.6868 0.248 0.810725
flour+:bakPow+ 0.8000 0.6868 1.165 0.277620
salt+:bakPow+ 1.1800 0.6868 1.718 0.124081
flour+:salt+:bakPow+ 0.5350 0.9712 0.551 0.596779
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4856 on 8 degrees of freedom
Multiple R-squared: 0.9565, Adjusted R-squared: 0.9185
F-statistic: 25.15 on 7 and 8 DF, p-value: 7.666e-05

8.12.4 pizza dough recipe elimination model

doe.model2 <- lm(score ~ flour + bakPow,data = ss.data.doe1)

summary(doe.model2)

Call:
lm(formula = score ~ flour + bakPow, data = ss.data.doe1)
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Residuals:
Min 1Q Median 3Q Max

-0.84812 -0.54344 0.06063 0.44406 0.86938

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8306 0.2787 17.330 2.30e-10 ***
flour+ 2.4538 0.3219 7.624 3.78e-06 ***
bakPow+ -1.8662 0.3219 -5.798 6.19e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6437 on 13 degrees of freedom
Multiple R-squared: 0.8759, Adjusted R-squared: 0.8568
F-statistic: 45.87 on 2 and 13 DF, p-value: 1.288e-06

8.12.5 pizza dough statistical model

𝑠𝑐𝑜𝑟𝑒 = 4.83 + 2.45 × 𝑓𝑙𝑜𝑢𝑟 − 1.87 × 𝑏𝑎𝑘𝑃𝑜𝑤 (8.4)
𝑠𝑐𝑜𝑟𝑒 = 5.12 + 1.23 × 𝑓𝑙𝑜𝑢𝑟 − 0.93 × 𝑏𝑎𝑘𝑃𝑜𝑤 (8.5)

8.12.6 main effect plot

8.12.7 interaction plot

8.12.8 model validity

8.12.8.1 residual patterns

8.12.8.2 residual distribution

shapiro.test(doe.model2_aug$.resid)

Shapiro-Wilk normality test

data: doe.model2_aug$.resid
W = 0.90652, p-value = 0.1023
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Figure 8.6: The main effect plot for the pizza dough model

8.13 Design of Experiments for process improvement

What if …

… not all influencing factors (𝑋) on the process have been identified?

… some 𝑋 depend on external conditions and are not under control?

robust design

… means also including noise factors that are not under our control.

8.13.1 pizza dough example

• pizzas came out pretty bad as reported by the customers

• pizza quality heavily relies on baking conditions! (𝑇 = 180°𝐶, 𝑡 = 9𝑚𝑖𝑛)
• almost nobody followed the recipe

• noise factors are included with two levels

– 7𝑚𝑖𝑛 and 11𝑚𝑖𝑛 as 𝑡+ and 𝑡−
– 160°𝐶 and 200°𝐶 as 𝑇 + and 𝑡−
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8.14 linear model - first run
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Figure 8.7: The interaction plot for the pizza dough model

• 25 factorial design with 2 replications = 64 experimental runs

8.14 linear model - first run

Call:
lm(formula = score ~ (. - repl)^3, data = ss.data.doe2)

Residuals:
Min 1Q Median 3Q Max

-1.20094 -0.32937 0.02625 0.35656 1.07187

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.16906 0.42203 7.509 5.09e-09 ***
flour+ 0.07406 0.54902 0.135 0.89340
salt+ -1.47219 0.54902 -2.681 0.01078 *
bakPow+ -1.43219 0.54902 -2.609 0.01293 *
temp+ 2.56156 0.54902 4.666 3.75e-05 ***
time+ 1.49594 0.54902 2.725 0.00967 **
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Figure 8.8: Check for any pattern in the model residuals

flour+:salt+ 1.71000 0.66214 2.583 0.01378 *
flour+:bakPow+ 2.14000 0.66214 3.232 0.00254 **
flour+:temp+ -1.26250 0.66214 -1.907 0.06414 .
flour+:time+ 0.46375 0.66214 0.700 0.48796
salt+:bakPow+ 0.89250 0.66214 1.348 0.18567
salt+:temp+ -0.19500 0.66214 -0.294 0.76998
salt+:time+ 1.38625 0.66214 2.094 0.04302 *
bakPow+:temp+ -1.17000 0.66214 -1.767 0.08526 .
bakPow+:time+ -1.30375 0.66214 -1.969 0.05628 .
temp+:time+ -3.91125 0.66214 -5.907 7.64e-07 ***
flour+:salt+:bakPow+ 0.14875 0.66214 0.225 0.82346
flour+:salt+:temp+ 1.52375 0.66214 2.301 0.02696 *
flour+:salt+:time+ -1.11875 0.66214 -1.690 0.09930 .
flour+:bakPow+:temp+ 0.22375 0.66214 0.338 0.73728
flour+:bakPow+:time+ 0.09125 0.66214 0.138 0.89112
flour+:temp+:time+ 0.30125 0.66214 0.455 0.65172
salt+:bakPow+:temp+ -0.33125 0.66214 -0.500 0.61977
salt+:bakPow+:time+ 0.33625 0.66214 0.508 0.61451
salt+:temp+:time+ -1.04375 0.66214 -1.576 0.12324
bakPow+:temp+:time+ 2.19125 0.66214 3.309 0.00205 **
---
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8.15 linear model - stepwise elimination
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Figure 8.9: Check for the residuals normality (QQ plot)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6621 on 38 degrees of freedom
Multiple R-squared: 0.9037, Adjusted R-squared: 0.8404
F-statistic: 14.27 on 25 and 38 DF, p-value: 1.428e-12

8.15 linear model - stepwise elimination

8.15.1 get rid of non-significant

selectionvar <- step(model.prob1, method="backwards")

Start: AIC=-34.13
score ~ ((repl + flour + salt + bakPow + temp + time) - repl)^3

Df Sum of Sq RSS AIC
- flour:bakPow:time 1 0.0083 16.669 -36.102
- flour:salt:bakPow 1 0.0221 16.683 -36.049
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- flour:bakPow:temp 1 0.0501 16.710 -35.942
- flour:temp:time 1 0.0908 16.751 -35.787
- salt:bakPow:temp 1 0.1097 16.770 -35.714
- salt:bakPow:time 1 0.1131 16.773 -35.701
<none> 16.660 -34.134
- salt:temp:time 1 1.0894 17.750 -32.080
- flour:salt:time 1 1.2516 17.912 -31.498
- flour:salt:temp 1 2.3218 18.982 -27.784
- bakPow:temp:time 1 4.8016 21.462 -19.926

Step: AIC=-36.1
score ~ flour + salt + bakPow + temp + time + flour:salt + flour:bakPow +

flour:temp + flour:time + salt:bakPow + salt:temp + salt:time +
bakPow:temp + bakPow:time + temp:time + flour:salt:bakPow +
flour:salt:temp + flour:salt:time + flour:bakPow:temp + flour:temp:time +
salt:bakPow:temp + salt:bakPow:time + salt:temp:time + bakPow:temp:time

Df Sum of Sq RSS AIC
- flour:salt:bakPow 1 0.0221 16.691 -38.017
- flour:bakPow:temp 1 0.0501 16.719 -37.910
- flour:temp:time 1 0.0908 16.759 -37.755
- salt:bakPow:temp 1 0.1097 16.779 -37.682
- salt:bakPow:time 1 0.1131 16.782 -37.670
<none> 16.669 -36.102
- salt:temp:time 1 1.0894 17.758 -34.050
- flour:salt:time 1 1.2516 17.920 -33.469
- flour:salt:temp 1 2.3218 18.991 -29.756
- bakPow:temp:time 1 4.8016 21.470 -21.902

Step: AIC=-38.02
score ~ flour + salt + bakPow + temp + time + flour:salt + flour:bakPow +

flour:temp + flour:time + salt:bakPow + salt:temp + salt:time +
bakPow:temp + bakPow:time + temp:time + flour:salt:temp +
flour:salt:time + flour:bakPow:temp + flour:temp:time + salt:bakPow:temp +
salt:bakPow:time + salt:temp:time + bakPow:temp:time

Df Sum of Sq RSS AIC
- flour:bakPow:temp 1 0.0501 16.741 -39.826
- flour:temp:time 1 0.0908 16.782 -39.670
- salt:bakPow:temp 1 0.1097 16.801 -39.598
- salt:bakPow:time 1 0.1131 16.804 -39.585
<none> 16.691 -38.017
- salt:temp:time 1 1.0894 17.780 -35.971
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8.15 linear model - stepwise elimination

- flour:salt:time 1 1.2516 17.942 -35.390
- flour:salt:temp 1 2.3218 19.013 -31.682
- bakPow:temp:time 1 4.8016 21.492 -23.836

Step: AIC=-39.83
score ~ flour + salt + bakPow + temp + time + flour:salt + flour:bakPow +

flour:temp + flour:time + salt:bakPow + salt:temp + salt:time +
bakPow:temp + bakPow:time + temp:time + flour:salt:temp +
flour:salt:time + flour:temp:time + salt:bakPow:temp + salt:bakPow:time +
salt:temp:time + bakPow:temp:time

Df Sum of Sq RSS AIC
- flour:temp:time 1 0.0908 16.832 -41.480
- salt:bakPow:temp 1 0.1097 16.851 -41.408
- salt:bakPow:time 1 0.1131 16.854 -41.395
<none> 16.741 -39.826
- salt:temp:time 1 1.0894 17.830 -37.791
- flour:salt:time 1 1.2516 17.993 -37.211
- flour:salt:temp 1 2.3218 19.063 -33.513
- bakPow:temp:time 1 4.8016 21.543 -25.687
- flour:bakPow 1 22.5032 39.244 12.699

Step: AIC=-41.48
score ~ flour + salt + bakPow + temp + time + flour:salt + flour:bakPow +

flour:temp + flour:time + salt:bakPow + salt:temp + salt:time +
bakPow:temp + bakPow:time + temp:time + flour:salt:temp +
flour:salt:time + salt:bakPow:temp + salt:bakPow:time + salt:temp:time +
bakPow:temp:time

Df Sum of Sq RSS AIC
- salt:bakPow:temp 1 0.1097 16.941 -43.064
- salt:bakPow:time 1 0.1131 16.945 -43.051
<none> 16.832 -41.480
- salt:temp:time 1 1.0894 17.921 -39.466
- flour:salt:time 1 1.2516 18.083 -38.889
- flour:salt:temp 1 2.3218 19.154 -35.209
- bakPow:temp:time 1 4.8016 21.633 -27.418
- flour:bakPow 1 22.5032 39.335 10.847

Step: AIC=-43.06
score ~ flour + salt + bakPow + temp + time + flour:salt + flour:bakPow +

flour:temp + flour:time + salt:bakPow + salt:temp + salt:time +
bakPow:temp + bakPow:time + temp:time + flour:salt:temp +
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flour:salt:time + salt:bakPow:time + salt:temp:time + bakPow:temp:time

Df Sum of Sq RSS AIC
- salt:bakPow:time 1 0.1131 17.054 -44.638
<none> 16.941 -43.064
- salt:temp:time 1 1.0894 18.031 -41.075
- flour:salt:time 1 1.2516 18.193 -40.502
- flour:salt:temp 1 2.3218 19.263 -36.844
- bakPow:temp:time 1 4.8016 21.743 -29.094
- flour:bakPow 1 22.5032 39.445 9.025

Step: AIC=-44.64
score ~ flour + salt + bakPow + temp + time + flour:salt + flour:bakPow +

flour:temp + flour:time + salt:bakPow + salt:temp + salt:time +
bakPow:temp + bakPow:time + temp:time + flour:salt:temp +
flour:salt:time + salt:temp:time + bakPow:temp:time

Df Sum of Sq RSS AIC
<none> 17.054 -44.638
- salt:temp:time 1 1.0894 18.144 -42.675
- flour:salt:time 1 1.2516 18.306 -42.106
- flour:salt:temp 1 2.3218 19.376 -38.469
- salt:bakPow 1 3.7588 20.813 -33.891
- bakPow:temp:time 1 4.8016 21.856 -30.762
- flour:bakPow 1 22.5032 39.558 7.208
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8.15 linear model - stepwise elimination

8.15.2 main effect and interaction
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8.15.4 pragmatic result

Table 8.5: The pragmatic results for the DoE
flour salt bakPow score T1t1 T2t1 T1t2 T2t2 Mean SD

- - - 5.515 3.675 5.120 4.185 3.900 4.479 0.6352559
+ - - 7.350 3.370 4.520 5.050 2.940 4.646 0.9814615
- + - 4.680 0.955 4.910 5.295 1.170 3.402 2.3394319
+ + - 6.685 3.590 5.895 5.625 3.870 5.133 1.1827299
- - + 2.525 1.915 3.055 1.725 1.700 2.184 0.6446882
+ - + 5.160 3.140 5.010 5.535 2.900 4.349 1.3216617
- + + 2.870 1.215 1.860 3.040 1.310 2.059 0.8388223
+ + + 6.210 5.805 6.110 5.980 5.965 6.014 0.1249667
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